3DPrinting
3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.
The r/functionalprint community is now located at: [email protected] or [email protected]
There are CAD communities available at: [email protected] or [email protected]
Rules
-
No bigotry - including racism, sexism, ableism, homophobia, transphobia, or xenophobia. Code of Conduct.
-
Be respectful, especially when disagreeing. Everyone should feel welcome here.
-
No porn (NSFW prints are acceptable but must be marked NSFW)
-
No Ads / Spamming / Guerrilla Marketing
-
Do not create links to reddit
-
If you see an issue please flag it
-
No guns
-
No injury gore posts
If you need an easy way to host pictures, https://catbox.moe may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)
Moderation policy: Light, mostly invisible
view the rest of the comments
There's supposed to be a heat sensor on the positive contact that you are rendering useless. That said, given the lack of longevity of every nickel battery I've tried on the past couple of decades, I don't think the charger manufacturers take this guideline seriously.
This is true, but at the default 500 mAh charge rate it seems unlikely that much heat will be generated? Worst case of 100% of input voltage getting converted to heat would be 700mW or so of energy needing to get dissipated per cell.
Yeah, the big cells can handle that just fine. The charger would overheat first unless a cell is shorted, which only possible with NiMH/NiCd if the charger malfunctions or the battery is physically damaged.
The charger circuitry should be designed to avoid that issue entirely.
It's not dangerous. It just degrades the batteries.
If "10,000 mAh" (if they're half that I'll be happy) batteries are heating while charging at 500mA odds are they're not in great shape to begin with.
Early Ni-CADs and NIMHs I agree with that assessment. However for low duty cycle applications the 3rd and 4th gen Eneloop type technology NIMHs perform very well for me. I've got about 20 operational cells I purchased in 2011 from an original batch of 30.
This isn't my data, but my anecdotal experience matches this:
If you have issues with longevity you should focus on getting a new charger. Many chargeres over charge the batteries and completely ruins them. Do it once and they are ruined forever and they wont hold charge anymore. Take a look at lygte-info.dk (don't worry the site is in English) where he reviews chargers. I can recommend many of the xtar chargeres.
Direct link for comparison of chargeres. https://lygte-info.dk/info/roundCellChargerIndex%20UK.html