this post was submitted on 27 Dec 2023
353 points (98.1% liked)
196
16784 readers
2677 users here now
Be sure to follow the rule before you head out.
Rule: You must post before you leave.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Base ⅒
Alright, you've got me there.
Wouldn't that require the number of available digits to be 1/10?
Fractional bases are weird, and I think there's even competing standards. What I was thinking is that you can write any number in base n like this:
\sum_{k= -∞}^{∞} a_k * n^k
where a_k are what we would call the digits of a number. To make this work (exists and is unique) for a given positive integer base, you need exactly n different symbols.
For a base 1/n, turns out you also need n different symbols, using this definition. It's fairly easy to show that using 1/n just mirrors the number around the decimal point (e.g. 13.7 becomes 7.31)
I am not very well versed in bases tho (unbased, even), so all of this could be wrong.
Based.