3DPrinting
3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.
The r/functionalprint community is now located at: or [email protected]
There are CAD communities available at: [email protected] or [email protected]
Rules
-
No bigotry - including racism, sexism, ableism, homophobia, transphobia, or xenophobia. Code of Conduct.
-
Be respectful, especially when disagreeing. Everyone should feel welcome here.
-
No porn (NSFW prints are acceptable but must be marked NSFW)
-
No Ads / Spamming / Guerrilla Marketing
-
Do not create links to reddit
-
If you see an issue please flag it
-
No guns
-
No injury gore posts
If you need an easy way to host pictures, https://catbox.moe may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)
Moderation policy: Light, mostly invisible
view the rest of the comments
(I can't disagree with you, cause you ain't wrong. ;) I do probably need to clarify my point though.)
That is exactly my point about the device not being UL rated. More than once, I have needed to add or replace poor ground connections to the chassis of some device, when applicable. If there is a failure point, it's usually where there were cost savings is involved and generally not with the charging circuit itself.
Most battery charging ICs have decent fail-safes for bad batteries. It's just economical to use the same, or similar, generic IC across hundreds of products. (The TP4056 (and clones) is a decent example of wide adoption, but it's not quite a 1:1 with this particular application. It has good trickle charging and a temperature safety, but not battery chemistry logic, that I am aware of.)
Again, it's just something to look for when inspecting rando devices. To your point, cloned charge regulators may have deleted safeties, so that is a thing.