Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try [email protected] or [email protected]
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
I've been thinking of a dreaming-like algorithm for neural networks (NN) which I have wanted to try.
When training an NN, you have a large set of inputs and corresponding desired outputs. You make random subsets of this and for each subset you adjust the NN to correspond more to the outputs. You do this over and over and eventually your NN is close to the outputs (hopefully). This training takes a long time and will only be done this initial time. (This is very a simplified picture of the training)
Now for the dreaming. When the NN is "awake" it accumulates new input/output entries. We want to adjust the NN to also incorporate these entries. But if we use only these for training we will lose some of the information the NN has learned in the initial training. We might want to train on the original data + the new data, but that is a lot, so no. Lets assume we do no longer even have the original data. We want to train on what we know and what we have accumulated during the waking time. Here comes the dreaming:
I see this as a form of dreaming as we have a wake and sleep portion. During waking we accumulate new experiences. During sleeping we incorporate these experiences into what we already know by "dreaming", that is make small training sessions on our NN.