this post was submitted on 01 Oct 2024
57 points (92.5% liked)

Ask Lemmy

27044 readers
1492 users here now

A Fediverse community for open-ended, thought provoking questions

Please don't post about US Politics. If you need to do this, try [email protected]


Rules: (interactive)


1) Be nice and; have funDoxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them


2) All posts must end with a '?'This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?


3) No spamPlease do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.


4) NSFW is okay, within reasonJust remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected]. NSFW comments should be restricted to posts tagged [NSFW].


5) This is not a support community.
It is not a place for 'how do I?', type questions. If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.


Reminder: The terms of service apply here too.

Partnered Communities:

Tech Support

No Stupid Questions

You Should Know

Reddit

Jokes

Ask Ouija


Logo design credit goes to: tubbadu


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 10 points 1 month ago

There are ways to get entropy out of non-uniform data in order to approach if not reach a uniform distribution.

A naïve, but surprisingly effective way to do this would be to put the data through a hashing algorithm of some sort.

Good hashing algorithms are specifically designed to make similar but non-identical inputs hash to values that appear unrelated.

Depending on the data source, there may be more efficient ways of getting an unpredictable sequence of bits out of it. e.g. for image data, an image difference from an average image may be more appealing than using the plain image, but I'm not sure whether that's legitimately "more random" or whether it just feels that way.