this post was submitted on 09 Dec 2023
54 points (90.9% liked)

Ask Lemmy

27513 readers
1443 users here now

A Fediverse community for open-ended, thought provoking questions


Rules: (interactive)


1) Be nice and; have funDoxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them


2) All posts must end with a '?'This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?


3) No spamPlease do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.


4) NSFW is okay, within reasonJust remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected]. NSFW comments should be restricted to posts tagged [NSFW].


5) This is not a support community.
It is not a place for 'how do I?', type questions. If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.


6) No US Politics.
Please don't post about current US Politics. If you need to do this, try [email protected] or [email protected]


Reminder: The terms of service apply here too.

Partnered Communities:

Tech Support

No Stupid Questions

You Should Know

Reddit

Jokes

Ask Ouija


Logo design credit goes to: tubbadu


founded 2 years ago
MODERATORS
 

Okay hear me out and this may sound like the ramblings of a lune but i just thought the following.

Surely a perfectly flat tight sail would more effectively convert wind energy into forward momentum rather than a full sail which would first have the wind hit it at a slight angle pushing the sail in that direction rather than perfectly straight forward.

I realise there are practicalities in operating a very high tension sheet but this lives purely in the hypothetical realm.

Does this make sense or have i been drinking drain cleaner again.

Ta Lemmers....

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 113 points 1 year ago* (last edited 1 year ago) (6 children)

Your question relates to the effect of aerofoil shape on lift: https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/shape.html

Please note that in aerodynamics, "lift" is any aerodynamic force that acts perpendicular to the relative wind on an object, so it's lift whether it pushes a plane up, down, left, right, or pushes a sailing boat across the wind.

Also the keel of the boat that keeps it sailing in a straight line is technically providing lift in the water, although that "lift" is sideways. Also it isn't aerodynamic lift, but hydrodynamic. The general field is called fluid dynamics, which covers both gasses and liquids.

You've got some good answers, but the problem with the air bouncing idea is that it ignores the air on top of the wing, or to the leeward side of the sail. The sail is pushed on by the windward air, and pulled on by the leeward air. (Edit: technically not pulled on, but you can model it that way if you take atmospheric pressure as 0 and anything lower than that as negative; it will give you correct results)

This is such a common misconception that NASA has listed it as a common incorrect theory of lift: https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/wrong2.html

A better way to think about it is flow turning - as the wind moves past the sail, its flow is turned and the momentum change causes an equal and opposite change in momentum of the boat: https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/right2.html

So ideally the leading edge of the sail should be parallel to the oncoming wind, and the trailing edge will be by definition parallel to the outgoing wind. The difference in velocity between these two winds multiplied by the mass of air passing over them over time will give you the force acting on the sail.

If the leading edge isn't parallel, the air's transition from free flow into contact with the sail will not be smooth, and will cause losses that reduce the efficiency of the sail.

In practice, the way to achieve this parallel flow is to let out the sail until you see "luffing", which is just the leading edge flapping a bit in the wind. Then you tighten it until the luffing disappears, at which point the sail should be correctly trimmed. As you carry on you can occasionally repeat this process to check that you've still got the right angle, as minor shifts in wind or boat direction can change the ideal angle of attack.

This is also called "setting" the sail. So when a ship "sets sail" it's referring to the fact a skipper would order the crew to "set sails", which would start them moving. Now the term also means to commence a voyage.

In some bigger boats you have strings called "telltales" on the surface of the sail. If you see them flapping you know the air flow is turbulent, and you can trim the sail until the telltales on both sides of the sail are blown into a smooth line along the sail. If you tighten the sail too much, the leeward telltales will flap. If you let it out it too much, the windward telltales will flap.

A flat surface is much less efficient as it will cause a lot more turbulence on the leeward side. A lot of work has been done to make sails form the most efficient shape, and they are always deliberately curved. The shape will change depending on the tightness of the sheet (the rope that sets the sail) and on its manufacture, but ultimately your sail shape was basically set when it was made. Different sail shapes will be optimised for different types of tack and different tasks, but I don't know enough about that to explain more. Mainly I know that spinnakers are made for running downwind and the other sails usually have to make do for the rest of the situations, but this article tells you a lot more: https://en.m.wikipedia.org/wiki/Sail_components

I only just found that article, so if it disagrees with anything I've said here I'd defer to it.

Very high performance sails and setups can do some cool things, like racing catamarans with their very sleek hulls and optimised sails allow you to sail in a close haul within 30-something degrees of the wind, whereas most normal sailboats can't get much closer than 45 degrees.

There is much more reading and interactive lessons on lift and other aerodynamics concepts on NASAs page here: https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/short.html

Edit: This seems like a decent resource for first time sailors, and gives some more in depth explanation of how to set your sails correctly: https://www.cruisingworld.com/learn-to-sail-101/

This is also where I learned what telltales are called. I've never sailed bigger boats much tbh.

Okay, I think that's most of what I can info-dump on the basis of your question. You landed on an intersection of two of my special interests lol :)

[–] Ersatz86 14 points 1 year ago (1 children)
[–] [email protected] 3 points 1 year ago
load more comments (4 replies)