Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try [email protected] or [email protected]
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
There are web calculators where you put in your latitude, angle of the panels and total kWp of your installation. It then spits out a kWh prediction for the year. Might still be shitty to find a good one tho. I can tell you that the system i installed at my parents house with 10 kWp has produced 8.4MWh of AC output this year. I live in southern Germany which is around 48ยฐ latitude and it was pretty gray and rainy this summer so could be much better.
This is daily total generation in kWh split up by how much went into the battery vs directly into live usage in the house vs exported to the grid.
This shows the sources of all the electricity that the house used over the year on any given day. Red being imported electricity.
This. There is too much local variation in sunlight angle and weather to give a straight answer. An easy method is to take the rated output and multiply by 0.2, but even that is merely a rough average over a year.
But there should be data on weather and climate variations. So theoretically you could include that data into the calculation. Theoretically. Who's gonna do it?
There is. I do it, it's my job as a solar engineer.
Basically, there are several leading softwares that solar engineers use to account for just about anything that happens in the real world.
I mainly use PVsol premium where I 3d model each site and the panel placements and electrical components and so on, then run a minute scale simulation based on the exact location weather data (using Metronorm 8.3)...
Almost no one outside my field understands what goes into my job. It doesn't help that there's a lot of untrained people pretending to do what I do...
I was having a smoke break with some colleagues once and was talking about how it should be possible to simulate solar panels in 3D, to account for occlusions by roofs, other buildings, trees etc. Didn't know there was a dedicated software and job for that, that's so cool!