3DPrinting
3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.
The r/functionalprint community is now located at: or [email protected]
There are CAD communities available at: [email protected] or [email protected]
Rules
-
No bigotry - including racism, sexism, ableism, homophobia, transphobia, or xenophobia. Code of Conduct.
-
Be respectful, especially when disagreeing. Everyone should feel welcome here.
-
No porn (NSFW prints are acceptable but must be marked NSFW)
-
No Ads / Spamming / Guerrilla Marketing
-
Do not create links to reddit
-
If you see an issue please flag it
-
No guns
-
No injury gore posts
If you need an easy way to host pictures, https://catbox.moe may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)
Moderation policy: Light, mostly invisible
view the rest of the comments
It’s extremely expensive to produce things with tight tolerances. Cheap 3D printers have gotten away with it by making things “good enough”. Which why you got this the other way around;
0.3mm is easy to measure with the right tool like digital indicator. On the other hand, quarter turn on a knob might adjust 0.3mm on one bolt, but 0.5mm on another.
Also as mentioned, ABL, cheap and can be DIYed. Cheap / printed parts can warped over time, bolts can shaken loose, etc. ABL just put these out of the equation.
I largely agree with what you're saying, but was surprised to see that you called out that much variation in thread pitch. I would absolutely expect a lot of variation in the ability to measure z - especially since most printers rely on microstepping here. Thread pitch on the other hand is generally way more consistent. I am not a machinist, but it would be interesting if one chimes in. I don't know what to ask Google to get some data here, but I strongly suspect there's a term to use.
Tight tolerances will exponentially skyrocket production cost, period.
While the coffee grinder example is true, this is not at all due to tolerances in the thread pitch used to adjust the distance.
This is because of the tolerances on the burrs themselves and the sideways alignment varies too much, and why it's better on more expensive models.
Threads are controlled to a fairly tight ISO standard, which can be done very cheaply because of the simple helix shape and ridiculously large quantities.
Burrs on the other hand are much more complex shapes, in much lower quantities, which is why tight tolerances are expensive on coffee grinder burrs and not on simple thread pitches on standard bolts.