No Stupid Questions
No such thing. Ask away!
!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.
The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:
Rules (interactive)
Rule 1- All posts must be legitimate questions. All post titles must include a question.
All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.
Rule 2- Your question subject cannot be illegal or NSFW material.
Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.
Rule 3- Do not seek mental, medical and professional help here.
Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.
Rule 4- No self promotion or upvote-farming of any kind.
That's it.
Rule 5- No baiting or sealioning or promoting an agenda.
Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.
Rule 6- Regarding META posts and joke questions.
Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.
On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.
If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.
Rule 7- You can't intentionally annoy, mock, or harass other members.
If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.
Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.
Rule 8- All comments should try to stay relevant to their parent content.
Rule 9- Reposts from other platforms are not allowed.
Let everyone have their own content.
Rule 10- Majority of bots aren't allowed to participate here.
Credits
Our breathtaking icon was bestowed upon us by @Cevilia!
The greatest banner of all time: by @TheOneWithTheHair!
view the rest of the comments
I know the problem is easier to visualize if you increase the number of doors. Let's say you start with 1000 doors, you choose one and the announcer opens 998 other doors with goats. In this way is evident you should switch because unless you were incredibly lucky to pick up the initial door with the prize between 1000, the other door will have it.
I now recall there was a numberphile with exactly that visualisation! It's a clever visual
It really is, it's how my probability class finally got me to understand why this solution is true.
This is so mind blowing to me, because I get what you're saying logically, but my gut still tells me it's a 50/50 chance.
But I think the reason it is true is because the other person didn't choose the other 998 doors randomly. So if you chose any of the other 998 doors, it would still be between the door you chose and the winner, other than the 1/1000 chance that you chose right at the beginning.
I don't find this more intuitive. It's still one or the other door.
This is the way to think about it.
The thing is, you pick the door totally randomly and since there are more goats, the chance to pick a goat is higher. That means there's a 2/3 chance that the door you initially picked is a goat. The announcer picks the other goat with a 100% chance, which means the last remaining door most likely has the prize behind it
Edit: seems like this was already answered by someone else, but I didn't see their comment due to federation delay. Sorry
Don't be sorry, your comment was the first time I actually understood how it works. Like I understand the numbers, but I still didn't get the problem, even when increasing the amount of doors. It was your explanation that made it actually click.
I think the problem is worded specifically to hide the fact that you're creating two set of doors by picking a door, and that shrinking a set actually make each individual door in that set more likely to have the prize.
Think of it this way : You have 4 doors, 2 blue doors and 2 red doors. I tell you that there is 50% chance of the prize to be in either a blue or a red door. Now I get to remove a red door that is confirmed to not have the prize. If you had to chose, would you pick a blue door or a red door? Seems obvious now that the remaining red door is somehow a safer pick. This is kind of what is happening in the initial problem, but since the second ensemble is bigger to begin with (the two doors you did not pick), it sort of trick you into ignoring the fact that the ensemble shrank and that it made the remaining door more "valuable", since the two ensembles are now of equal size, but only one ensemble shrank, and it was always at 2/3 odds of containing the prize.
The odds you picked the correct door at the start is 1/1000, that means there's a 999/1000 chance it's in one of the other 999 doors. If the man opens 998 doors and leaves one left then that door has 999/1000 chance of having the prize.
Same here, even after reading other explanations I don't see how the odds are anything other than 50/50.
read up on the law of total probability. prob(car is behind door #1) = 1/3. monty opens door #3, shows you a goat. prob(car behind door #1) = 1/3, unchanged from before. prob(car is behind door #2) + prob(car behind door #1) = 1. therefore, prob(car is behind door #2) = 2/3.
Following that cascade, didn't you just change the probability of door 2? It was 1/3 like the other two. Then you opened door three. Why would door two be 2/3 now? Door 2 changes for no disclosed reason, but door 1 doesn't? Why does door 1 have a fixed probability when door 2 doesn't?
No, you didn’t change the prob of #2. Prob(car behind 2) + prob(car behind 3) = 2/3. Monty shows you that prob(car behind 3) = 0.
This can also be understood through conditional probabilities, if that’s easier for you.
This is fantastic, thank you.
How do we even come up with such amazing problems right ? It's fascinating.