Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try [email protected] or [email protected]
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
Technically yes but also no.
Synchronized reading is hard when the pixel count is high. At some point it's hard enough to pull all the data through the controller at once quickly so you need either multiple circuits, or one circuit that reads a section of pixels at once (row by row = rolling shutter effect).
Some of this is processing limits in the internal controller in the sensor, but it's also timing and signal routing and synchronized readout for a massive amount of pixel sensors. It's literally tens of millions of triplets of RGB detectors which has to be read simultaneously 60 times per second, and basic color correction has to happen right in the controller, before the main CPU / GPU gets the image stream.
At some point you even get cooling issues, and need a cooling system behind the sensor.
Thank you! To follow up on that if it’s the pixel count that causes the slow readout why are phones with high pixel count sensors able to read out so quickly? Is it just because the processors are better?
Higher end controllers, yes. Often with integrated video encoding circuits to reduce the data volume to send to the main processor.