this post was submitted on 30 Oct 2024
384 points (97.3% liked)

Science Memes

11404 readers
2208 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] A_Union_of_Kobolds 3 points 1 month ago (3 children)

Yeah I get that, but what's the application to electromagnetism? I'm an electrician, it's been a few years since I had to think about induction and capacitance calculations, but I do recall them being based mostly on trigonometry. Where does i come into play, I guess is what I'm asking.

[–] marcos 3 points 1 month ago

I think the GP is going with complex numbers representing a magnitude and a rotation angle, so that side with length "i" is rotated, and A is an angle of 0°.

But this image is out of order for that. This one would lead to A = 180°. Either way, you can't use Pythagoras theorem anyway.

[–] [email protected] 2 points 1 month ago

Sorry I insta-deleted because I realized I wasn't answering the question but it looks like it still slipped through.

I wasn't answering the question because I don't know. I'm aware that imaginary numbers play a major role in circuit math, but I also need an expert to ELI5.

[–] owenfromcanada 2 points 1 month ago

The "i" terms represent the induction and capacitance of a system, while the real component represents the resistance. You can think of "i" terms as the characteristics that hold energy in some way (in mechanical terms, something springy or something with inertia).