this post was submitted on 03 Sep 2024
488 points (99.8% liked)

science

15120 readers
393 users here now

A community to post scientific articles, news, and civil discussion.

rule #1: be kind

<--- rules currently under construction, see current pinned post.

2024-11-11

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] paraphrand 13 points 4 months ago* (last edited 4 months ago) (1 children)

I hope it can be sent somewhere neat once they are done testing. But I assume it’s not configured for long range communication.

It would be cool if it could be sent, slowly, to a “nearby” body.

[–] Passerby6497 9 points 4 months ago (3 children)

Iirc, solar sail designs like this can actually go stupid fast when properly propelled by something like a laser array.

[–] [email protected] 9 points 4 months ago (1 children)

What's fun about these is that the mass of the actual vehicle can be much smaller if it doesn't need to carry rocketry and fuel on board. So even though they'll never compete with rockets for power (energy used over a specific length of time), starting at a lighter weight and never running out of fuel means that these systems could theoretically exceed the top speeds (relative to the earth) of our fastest rockets, given enough time.

[–] WhatYouNeed 2 points 4 months ago

How do they slow down or stop; is it by reversing the sail?

[–] NotMyOldRedditName 3 points 4 months ago* (last edited 4 months ago) (2 children)

Won't the sail approach the speed of light if it stays on course in line with the sun for an exceptionally long time?

[–] Passerby6497 3 points 4 months ago* (last edited 4 months ago) (2 children)

No, because the solar wind drops off around 100 AU, and the power of the solar wind is going to reduce the farther out you are. These kinds of craft would get much more acceleration from a laser array that can put much more concentrated energy into the sail. But just like the solar wind, it will lose power the farther away from the array it is, along with any kind of intermediary debris attenuating the beam or unfavorable angles between the array and the craft.

So you can get these to an appreciable fraction of the speed of light, but I don't think we'd be able to get anywhere close to c with this kind of a setup.

Edit: I was wrong about the solar wind above, it's only like .5% as powerful as the photons emitted by the sun, and that energy drops off at only 1.5 AU, so they'll get much less energy than I thought without an external power source like a laser array.

[–] [email protected] 3 points 4 months ago (1 children)

I suppose it can't build up enough speed by going in direct line out of the solar system as the falloff would mean there's not enough "runway" so to speak. But I wonder if you could circle the sun and "tack" like a ship does sailing into the wind and build up more momentum that way?

[–] [email protected] 2 points 4 months ago

You could have an eccentric orbit that swings far out into the solar system and then when it approaches the sun again accelerates to reach the escape velocity of the sun. But that would take years.

And I think still only be rather slow once it escapes the solar system since the escape velocity would be almost used up.

There is the concept of a nuclear photonic rocket - Wikipedia which I think of as a light sail and a white hot glowing lump of nuclear fuel on a string.

[–] Cocodapuf 2 points 4 months ago* (last edited 4 months ago) (1 children)

Doesn't "solar wind" refer to the physical particles emitted from the sun? Like hydrogen, helium, etc ejected from the sun's outer layers?

My understanding is that the solar sail is propelled mostly by the photons themselves, not the atomic particles that may also be reaching it.

Of course this probably doesn't change your argument at all, since the intensity of light drops off precipitously as you fly further and further from the sun.

[–] Passerby6497 1 points 4 months ago* (last edited 4 months ago)

You're correct, the solar wind is like .5% the energy of the emitted photons and really begins to diminish after only 1.5AU, so they're even less effective in system without a laser array than I half remembered.

[–] Cocodapuf 1 points 4 months ago

I believe this is one of those things that benefits from scale. Theoretically, the larger you make the sail, the better the thrust to mass ratio you can achieve (even before calculating a better payload mass to sail mass ratio). With improved materials, we can make stronger and lighter sails and support structures, and this will in turn result in higher velocities by the time the vehicle has left the effective range of the sun. I think speeds truly approaching c are unlikely, but they can still achieve "really freaking fast".

But then new advanced materials could also change that, we're developing metamaterials with some fascinating properties, carbon nanotubes are just the tip of the iceberg. Who's to say that we couldn't some day achieve those speeds.

[–] Lemming6969 0 points 4 months ago (3 children)

Just to zoom by the target in 100000 years so quickly no pictures or data can be captured.

[–] [email protected] 8 points 4 months ago

There's a paper from 1984 that worked out the math for a two-sail system that could get a spacecraft to Alpha Centauri, and slow down and end up in that gravity well, with a 41-year mission time. It would do so by discarding a reflector that points backward at the actual payload with its own sail. The paper also proposes a mechanism for a round trip mission, too, using 3 sails.

[–] Passerby6497 4 points 4 months ago

That's actually not that big of a deal!

Since these craft would be small, they wouldn't have the power to transmit back to Earth anyway. So with something like this, you would actually want a string of these kind of crafts that you would propel along the same vector so that they could send the data back using each following craft as the next point in the network back to Earth. So each one can take additional pictures to get a resolvable image at the end!

Now, getting them on the same vector is the hard part, since we're constantly moving through space and won't have the same launch conditions on subsequent launches, but this is all theoretical at this point anyway.

[–] [email protected] 3 points 4 months ago

The scientist Robert L. Forward discussed possible ways to handle this in his novel Rocheworld. The fiction part wasn't about the light sail, more the general AI, life extension tech, and the aliens.