This ultimate neutron star merger releases a wealth of free neutrons, which are particles normally bound up with protons in atomic nuclei. This can allow other atomic nuclei in these environments to quickly grab these free neutrons — a process called rapid neutron capture or the "r-process." This allows the atomic nuclei to grow heavier, creating superheavy elements that are unstable. These superheavy elements can then undergo fission to split down into lighter, stable elements like gold.
In 2020, Mumpower predicted how the "fission fragments" of r-process-created nuclei would be distributed. Following this, Mumpower’s collaborator and TRIUMF scientist Nicole Vassh calculated how the r-process would lead to the co-production of light precision metals such as ruthenium, rhodium, palladium and silver — as well as rare earth nuclei, like europium, gadolinium, dysprosium and holmium.