Lemmy.World

170,639 readers
8,095 users here now

The World's Internet Frontpage Lemmy.World is a general-purpose Lemmy instance of various topics, for the entire world to use.

Be polite and follow the rules ⚖ https://legal.lemmy.world/tos

Get started

See the Getting Started Guide

Donations 💗

If you would like to make a donation to support the cost of running this platform, please do so at the following donation URLs.

If you can, please use / switch to Ko-Fi, it has the lowest fees for us

Ko-Fi (Donate)

Bunq (Donate)

Open Collective backers and sponsors

Patreon

Liberapay patrons

GitHub Sponsors

Join the team 😎

Check out our team page to join

Questions / Issues

More Lemmy.World

Follow us for server news 🐘

Mastodon Follow

Chat 🗨

Discord

Matrix

Alternative UIs

Monitoring / Stats 🌐

Service Status 🔥

https://status.lemmy.world

Mozilla HTTP Observatory Grade

Lemmy.World is part of the FediHosting Foundation

founded 2 years ago
ADMINS
1
2
 
 

The ability of large language models (LLMs) to create text and images almost indistinguishable from those created by humans is disrupting, if not revolutionizing, countless fields of human activity. Yet the potential for misuse is already manifest, from academic plagiarism to the mass generation of misinformation.

This week, Sumanth Dathathri at DeepMind, Google’s AI research lab in London, and his colleagues report their test of a new approach to ‘watermarking’ AI-generated text by embedding a ‘statistical signature’, a form of digital identifier, that can be used to certify the text’s origin. The word watermark comes from the era of paper and print, and describes a variation in paper thickness, not usually immediately obvious to the naked eye, that does not change the printed text. A watermark in digitally generated text or images should be similarly invisible to the user — but immediately evident to specialized software.

Dathathri and his colleagues’ work represents an important milestone for digital-text watermarking. But there is still some way to go before companies and regulators will be able to confidently state whether a piece of text is the product of a human or a machine. Given the imperatives to reduce harm from AI, more researchers need to step up to ensure that watermarking technology fulfils its promise.

This is the official paper and the Nature News report related to the SynthID project. Basically, "watermarking" to make sure the model outputs can be easily recognized computationally... but it's not foolproof. Especially relevant in light of AI regulations. News article itself contains some interesting opinions

Paper: https://doi.org/10.1038/s41586-024-08025-4

GitHub repo: https://github.com/google-deepmind/synthid-text

view more: next ›