Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
We'd see that in the redshift: one direction would be more redshifted than another. Instead, we see all points in space moving away from all other points (except points mutually within gravitationally bound systems), and the rate of expansion between two points (recessional velocity) is directly proportional to the distance between them: the more distance, the faster they expand.
Edit: To answer the question in the title: Strictly, we don't. We know, as you pointed out, that our measurements don't agree. We also have good evidence that the rate of expansion was different in the past (much, much faster) in the early universe.
That makes sense, but how would we then be able to distinguish how much of the redshift is due to the metric expansion of space and how much is due to their velocity vector component in that direction?
Inflation is supposed to explain this: It could provide the initial impulse to kickstart the velocities. I think the general idea is that the fact that everything is moving away from each other to begin with is explained by inflation, and the fact that this expansion is accelerating is explained by dark energy. Take all this with a grain of salt, here we approach the limits of my tenuous understanding, but what I do understand is that none of this is experimentally verified: No "inflaton" has been found, or any other mechanism to otherwise explain inflation theory has ever been produced such that we could test it, and no working model of dark energy has ever been produced (to my limited knowledge) that we could test or detect.
Tl;dr: I'm pretty sure it's untestable anyway, we basically will never know during our lifetime short of some breakthrough in physics.
Right, but the velocity component would still be present in some form due to the gravitational attraction between bodies. I don't know how significant this would be compared to the redshift value from the initial kick from inflation, or if it is possible to separate the two components somehow.
Gravitational attraction is not a relevant factor on the largest scales where dark energy takes over. To be more precise, it's possible to measure the effects, and to describe a specific distance limit between two bodies where they can no longer become gravitationally bound and are doomed to eventually expand out of each others' event horizons. That limit is the precise boundary between gravitational dominance and DE dominance.
To be specific, literally everything outside of the Virgo Supercluster (home to Andromeda and Milky Way among others) is outside of this limit, and will eventually become impossible to detect because the light between us and them isn't moving as fast as the rate of expansion between us and them. Everything within the supercluster is gravitationally bound, and will eventually (iirc, grain of salt on this one) form a supergalaxy.
Wow. So it's like that adage. However big you think space is, it's much bigger than that.
It's hard to fathom scales at which being gravitationally bound is insignificant relative to those type of effects.
Yes.