this post was submitted on 12 Mar 2024
28 points (96.7% liked)

Ask Science

8694 readers
113 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

Since we know that it isn't constant with time, how can we be sure that it is constant with space? This might be a reason the variability in our measurements which seem to disagree.

Put another way, why couldn't the universe expand in one direction preferentially compared to another?

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 2 points 8 months ago* (last edited 8 months ago) (1 children)

Gravitational attraction is not a relevant factor on the largest scales where dark energy takes over. To be more precise, it's possible to measure the effects, and to describe a specific distance limit between two bodies where they can no longer become gravitationally bound and are doomed to eventually expand out of each others' event horizons. That limit is the precise boundary between gravitational dominance and DE dominance.

To be specific, literally everything outside of the Virgo Supercluster (home to Andromeda and Milky Way among others) is outside of this limit, and will eventually become impossible to detect because the light between us and them isn't moving as fast as the rate of expansion between us and them. Everything within the supercluster is gravitationally bound, and will eventually (iirc, grain of salt on this one) form a supergalaxy.

[–] [email protected] 2 points 8 months ago (1 children)

Wow. So it's like that adage. However big you think space is, it's much bigger than that.

It's hard to fathom scales at which being gravitationally bound is insignificant relative to those type of effects.