this post was submitted on 19 Feb 2024
220 points (97.8% liked)
Privacy
32173 readers
1195 users here now
A place to discuss privacy and freedom in the digital world.
Privacy has become a very important issue in modern society, with companies and governments constantly abusing their power, more and more people are waking up to the importance of digital privacy.
In this community everyone is welcome to post links and discuss topics related to privacy.
Some Rules
- Posting a link to a website containing tracking isn't great, if contents of the website are behind a paywall maybe copy them into the post
- Don't promote proprietary software
- Try to keep things on topic
- If you have a question, please try searching for previous discussions, maybe it has already been answered
- Reposts are fine, but should have at least a couple of weeks in between so that the post can reach a new audience
- Be nice :)
Related communities
much thanks to @gary_host_laptop for the logo design :)
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I was going to suggest an attack similar to what I'd assume the guys in your link achieved—the actual data on the flash chip can be dumped easily, so if you can figure out the encryption algorithm used, you don't need a whole lot of computational power to brute force a 15 digit numeric key (a couple of high end GPUs would probably get you there in an hour or so) and decrypt the dumped data.
I'd stop short of saying "easily" since you have to get the epoxy potting off of the chip. But you are right that there doesn't seem to be any active tamper reactance. The numeric key is apparently 8 digits. Since it's a 10 digit keypad, at least 2 of the digits are unused, and you might be able to recognize those from the comparative lack of fingerprints and wear on those specific keys. So that narrows down the search range some more.
Or just change the pin once in a while.