78
Mathematicians Crack a Century-Old Problem That's Perfect For Your Next Party
(www.sciencealert.com)
A community to post scientific articles, news, and civil discussion.
rule #1: be kind
<--- rules currently under construction, see current pinned post.
2024-11-11
I've read the whole thing and I feel like there's something that's just assumed that everyone understands.
What exactly is the problem? Why do we care how many people know each other or don't? I'm so confused.
As with many articles in science and math, the discovery isn't that "this weird thing happens", but that "hey, we can model this weird thing using this equation/model (that sometimes comes from a totally unrelated field)." Maybe in 10, 20, 50 years this discovery will become the key to understanding yet another weird thing, and so on.
"Everyone understands" that if you drop an object it falls to the ground. Yet we still don't fully understand how gravitation works.
I understood that. I'm asking about the problem with parties that this helps people fix.
no, the story in the article about Ramsey numbers is just meant to make you the life of your next party. try it, I'm sure people will love the debate.
I mean socially, do you want to go to a party and be the only person who doesn't know anyone? If you had to pick, I'd imagine you'd either want to catch up with a couple people you do know OR meet new people. The trouble gets when the crowd is a mix of old and new and people feel alienated.
I don't understand how this discovery would prevent that though. You could still get invited to a party with over 25 people where you are the only person who doesn't know anyone.
That would be the ideal for meeting new people, would it not?
If everyone is already familiar with the others and talking about a niche topic and their inside jokes? No. That's not ideal.
At a party I'd rather either catch up with some mutual friends OR meet some new faces. I don't want to be stuck between my friend taking about niche topic and a couple other people I don't know who don't want to be in that conversation
That's a good way to think about the actual practical question this result can be used for.
For me, it was just fascinating to learn about Ramsey theorem in the first place, not even this new development. I've never heard of it. I couldn't find any specific practical applications for these type of results, but it is just so elegant.
These types of abstract problems often get applied to physics or various optimization problems where efficient solutions can save a ton of work or enable new techniques
But this seems to claim it solves some practical problem with parties. I don't know what that problems.
It's about what combinations of "nodes" with specific relations to others are possible in a group of different sizes
That's just a simple way to phrase the problem in concrete terms. The immediate applications are usually not of interest, unlike the novel techniques with which hard problems are solved.
there's a lot of things that feel like they should be obvious, but are almost impossible to prove mathematically. it's the difference between seeing something happens, and understanding why it happens and proving that it will always happen (or not, and why)