this post was submitted on 28 Aug 2023
104 points (90.6% liked)

No Stupid Questions

36583 readers
1638 users here now

No such thing. Ask away!

!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.

The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:

Rules (interactive)


Rule 1- All posts must be legitimate questions. All post titles must include a question.

All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.



Rule 2- Your question subject cannot be illegal or NSFW material.

Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.



Rule 3- Do not seek mental, medical and professional help here.

Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.



Rule 4- No self promotion or upvote-farming of any kind.

That's it.



Rule 5- No baiting or sealioning or promoting an agenda.

Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.



Rule 6- Regarding META posts and joke questions.

Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.

On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.

If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.



Rule 7- You can't intentionally annoy, mock, or harass other members.

If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.

Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.



Rule 8- All comments should try to stay relevant to their parent content.



Rule 9- Reposts from other platforms are not allowed.

Let everyone have their own content.



Rule 10- Majority of bots aren't allowed to participate here.



Credits

Our breathtaking icon was bestowed upon us by @Cevilia!

The greatest banner of all time: by @TheOneWithTheHair!

founded 2 years ago
MODERATORS
 

Like Fluoride or Oxygen.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 18 points 1 year ago (1 children)

I'd argue against that. For one thing it is impossible to imagine a situation where there is no change in the gravitational gradient across your body over time. Your orbiting a black hole situation is a perfect example of a situation where the gradient alone would tear you apart. The conditions you've specified are tautological. There's no way to maintain a zero gravitational gradient while also simultaneously having extremely high gravitational field. The two are mutually exclusive in any conceivable scenario.

It's like saying a human being in a hypersonic wind stream won't necessarily hurt you, burn you alive and rip you to pieces (not necessarily in that order) as long as there is no turbulence and you have a sufficient boundary layer -- but you're a non-aerodynamic human body in a hypersonic wind stream, so of course there will be turbulence and the boundary layer will not protect you at all, you're going to die, basically instantly.

[–] raspberriesareyummy 0 points 1 year ago (2 children)

Does the change in gravity gradient across your body kill you right now? No? You are currently orbiting the supermassive black hole in the center of the milky way. You and everything else in the milky way aside from a few intergalactic objects just traveling through.

I am not an astrophysicist, but I do understand basic physics.

[–] [email protected] 2 points 1 year ago (1 children)

Does the change in gravity gradient across your body kill you right now? No? You are currently orbiting the supermassive black hole in the center of the milky way.

It was implied by "accretion disc" and by the fact that we're talking about gravitational gradients at all that we're talking about a close orbit. Gravitational strength gets smaller with distance according to the inverse square law, so by the time you're a few light years out from the galactic core the gravitational gradient is already extremely insignificant.

[–] raspberriesareyummy 1 points 1 year ago* (last edited 1 year ago)

Accretion discs can be large enough that I am pretty sure a human body wouldn't be torn apart at that distance (at least the outer bits) by the difference in gravity across it's length. In the linked article about the supermassive black hole at the center of the Milky Way, we're talking 1000 astronomic units, so 1.5 * 10^14 meters.

The current value of this black hole's mass is estimated at ca. 4.154±0.014 million solar masses.

So let's calculate the equivalent distance from the sun in terms of gravitational force on an object at the outer edge of the accretion disk:

F_sun = C * (R_equivalent)^-2 * m_object

F_black_hole = C * 4.15*10^6 * (R_accretion_disk)^-2 * m_object

where C equals the gravity constant times the mass of our sun.

==> C * (R_equivalent)^-2 * m_object = C * 4.15*10^6 * (R_accretion_disk)^-2 * m_object

divide by C and m_object:

<=> (R_equivalent)^-2 = 4.15*10^6 * (R_accretion_disk)^-2

invert:

<=> R_equivalent^2 = (1/4.15) * 10^-6 * (R_accretion_disk)^2

==> R_equivalent^2 ~= 0.241 * 10^-6 * (R_accretion_disk)^2

square root (only the positive solution makes sense here):

==> R_equivalent ~= 0.491 * 10^-3 * R_accretion_disk

with R_accretion_disk = 1000 astronomic units = 10^3 AU

<=> R_equivalent ~= 0.491 * 10^-3 * 10^3 AU

<=> R_equivalent ~= 0.491 AU

Unless I have a mistake in my math, I sincerely hope you will agree that the gravitational field (tidal forces) of the sun is very much survivable at a distance of 0.491 astronomical units - especially since the planet Mercury approaches the sun to about 0.307 AUs in its perihelion.

[–] [email protected] 1 points 1 year ago (1 children)

If the gravity were strong enough and the source close enough then the tidal force would absolutely be strong enough to simultaneously crush you and rip you apart. The same effect gives rise to tides on this planet, hence the name.

[–] raspberriesareyummy 0 points 1 year ago (1 children)

Your orbiting a black hole situation is a perfect example of a situation where the gradient alone would tear you apart.

I just proved this claim of yours wrong, and then you move the goalposts. I said from the very beginning that a gravity gradient is a problem.

[–] [email protected] 1 points 1 year ago* (last edited 1 year ago)

I studied Relativity at university as part of combined Physics/Maths degree, but please feel free to continue entertaining us with your popular magazine-based learnings.