Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
I went looking for some number for fun. (Every work day needs a good distraction, right?)
The nuclear plant that provides some of my electricity supposedly intakes 24 million gallons of water per day. As far as I can tell, that is entirely to make up for cooling water that is released as steam. There is a lot more cooling water present in the system which is recaptured and reused.
24M gallons/day = 16,667 gallons/minute. That's a significant amount of water. However, it's several orders of magnitude less than the flow through the smaller hydro power dams in my area. A few that I looked at have average turbine discharges in the ballpark of 6,000,000 gallons/min.
So for the cost (and vast regulatory headaches) of adding a secondary generation unit onto a nuclear cooling tower, you can just dam a nearby river and get 360x the energy.
Edit: I was way off on that 24M gallon/day number. After more reading, it looks like only around 2% of that water becomes steam leaving the cooling towers. So condensing the steam would give us a flow rate of 333 gallons/min of liquid water. That's barely enough flow to operate a water slide at a theme park, let alone generate significant electricity through a turbine.
They are not evaporating 24M gallons a day. Most of that will be returned to the body of water it is pulled from but a few degrees warmer. There's strict limits on how much the plant can warm a river or lake because of concerns about killing fish so plants will have cooling towers in parallel.
That makes a lot more sense. I thought the number seemed huge, but everything I could find said they have closed-loop cooling at this particular facility.