this post was submitted on 13 Dec 2024
29 points (91.4% liked)
Videos
14404 readers
133 users here now
For sharing interesting videos from around the Web!
Rules
- Videos only
- Follow the global Mastodon.World rules and the Lemmy.World TOS while posting and commenting.
- Don't be a jerk
- No advertising
- No political videos, post those to [email protected] instead.
- Avoid clickbait titles. (Tip: Use dearrow)
- Link directly to the video source and not for example an embedded video in an article or tracked sharing link.
- Duplicate posts may be removed
Note: bans may apply to both [email protected] and [email protected]
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Here’s what I don’t understand. It all seems like a limitation based on the assumption that the observing ship is not moving at all. You can’t travel the speed of light relative to me because it would look like you’ve stopped accelerating.
What if the observing ship is moving half the speed of light, and the other ship is moving in the opposite direction at half the speed of light? Relative to each other, they are both traveling the speed of light now. I am definitely missing something here.
My gut wants to say since the speed of light in a vacuum is constant across all reference frames, you can only make statements of speed from inertial reference frames (non accelerating) .... Noo, hrmm that doesn't work. I'm stumped, by physics isn't up to this, it's a great thought experiment
This would be a excellent question for no stupid questions! [email protected]