this post was submitted on 20 Nov 2024
168 points (98.8% liked)
Technology
60247 readers
5394 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I thought it was already fairly well established that symmetric encryption is not something that a quantum computer could potentially crack, only asymmetric encryption is theoretically possible due to its use of a prime order field.
Moreover:
Even if we go with the assumption that the military is 10 years ahead in technology and can factor 221 with Shor's, that's still nowhere near enough to break RSA. Much more efficient to attack all the systemic flaws in RSA, hence why 1024 is no longer considered secure, 2048 is assumed to be breakable by any 3 letter agency, 4096 is assumed to be safe (for now), but mostly the latest and greatest is elliptical ECDSA/Ed25519 (of which NIST has been accused of rigging ECDSA for easier cracking lol).
Yep. Technically you could in principle use Grover's algorithm to speed up cracking a symmetrical cipher, but the size typically used for the keys is too large so even though it'd technically be faster it still not be possible in practice. Even with asymmetrical ciphers we already have replacements that are quantum safe, although most companies have not implemented them yet.