bunchberry

joined 4 months ago
[–] bunchberry 1 points 2 hours ago

No, they are not, they are incredibly wealthy millionaires whose campaigns are bought and paid for by billionaires. The Democrat party is actively supporting an ongoing holocaust, an industrial scale genocide and ethnic cleansing of millions of people from their homeland. The idea that these people are all secretly saints who are just too scared to act on it is such a completely ridiculous belief. They do not do moral things because they are not moral. They are not saints. They simply do not represent those values. You elect a party that openly believes X and then claim they don't do Y because they're too scared to do it. No, they don't do Y because they don't represent Y, they represent X. Democrats are by no means in any way "soft-willed." Whenever it comes to something they actually believe in, they are very good at rallying the votes to get it passed, such as when they are passing something in favor of the military industrial complex or the Israel lobby.

[–] bunchberry 1 points 11 hours ago* (last edited 11 hours ago) (2 children)

Democrats are heartless genocidal freaks, and hardly "spineless" they just don't care. It's a party of billionaires. I have no idea how you can unironically believe this ethos that they're all a bunch of bleeding hearts but are just too scared, quivering in their boots to act but they all mean well... apparently! No, they just never fight for those values you want them to fight for because their party does not represent those values, and pretending they do at this point... I have a bridge to sell you.

[–] bunchberry 1 points 11 hours ago

Democrats like losing because they only disagree on Republicans on like 2 issues and their funding is great when Republicans are in power.

[–] bunchberry 1 points 11 hours ago* (last edited 11 hours ago)

You are claiming that Trump automatically wins if nobody votes. That's objectively not how US elections work. He still has to get the plurality of votes to win. People who do not cast votes don't automatically support Trump, it just doesn't sway the election at all. Please stick to the facts and not to the fake news. Election misinformation is not cool.

[–] bunchberry 1 points 13 hours ago

People love to use similarities between nature and computers as evidence in favor of us living in a simulation, but they forget that computers are built out of natural parts, so maybe the reason there are similarities between computers and nature are just evidence that computers are natural...

[–] bunchberry 1 points 13 hours ago

Hot take but I disagree. Yeah, I have been under anesthesia before. The doctor ask me to counter backwards from 10, and before I even get to 0, I ask him when the surgery will start, and he tells me it is already over. It feels like I experienced nothing at all.

But how can I be so sure? Let's say you watch a film and you never take your eyes off of it. When the credits roll, someone asks you, "what was the color of the shirt of background character #42 at exactly the 1 hour and 12 minute mark?" You probably would be stumped and would have no answer to it. Yeah, you watched the whole film, you experienced it all, clearly you saw the character, but why would you pay any attention to that?

We can experience things without being aware of them. Indeed, if you disagree, then if a person experiences a whole wonderful life but then bumps their head and forgets everything, you would have to claim that they retroactively went into the past and erased having ever experienced it. No, they still experienced it, they just have no memories that they do.

Anesthesia works by flooding your brain with noise, which makes it hard to be aware of anything, and so you don't recall anything, but your physical body is still there and it is still interacting with the environment. It seems to me to make more sense to say you are thus still experiencing the world just not aware of it.

[–] bunchberry 5 points 14 hours ago

If you think about it, a slice of pizza is basically a computer that simulates a slice of pizza down the quark level.

[–] bunchberry 1 points 14 hours ago

Quantum encryption won't ever be a "thing."

All cryptography requires a pool of random numbers as inputs, and while different cryptographic methods are more secure than others, all of them are only as secure as their random number pool. The most secure cipher possible is known as a one-time pad which can be proven to be as secure as a cryptographic algorithm could possibly be, and so the only thing that could possibly lead to it being hacked is a poor random number pool. Since quantum mechanics can be used to generate truly random numbers, you could have a perfect random number pool, combined with a perfect cipher, gives you perfect encryption.

That sounds awesome right? Well... no. Because it is trivially easy these days to get regular old classical computers to spit out basically an indefinite number of pseudorandom numbers that are indistinguishable from truly random numbers. Why do you think modern operating systems allow you to encrypt your whole drive? You can have a file tens of gigabytes bit and you click it and it opens instantly, despite your whole drive being encrypted, because your CPU can generate tens of gigabytes of random numbers good enough for cryptography faster than you can even blink.

Random number generation is already largely a solved problem for classical computers. I own a quantum random number generator. I can compare it in various test suites such as the one released by NIST to test the quality of a random number generator, and it can't tell the different between that and my CPU's internal random number generator. Yes, the CPU. Most modern CPUs both have the ability to collect entropy data from thermal noise to seed a pseudorandom number generator, as well as having a hardware-level pseudorandom number, such as x86's RDSEED and RDRAND instructions, so they can generate random numbers good enough for cryptography at blazing speeds.

The point is that in practice you will never actually notice, even if you were a whole team of PhD statisticians and mathematicians, the difference between a message encrypted by a quantum computer and a message encrypted by a classical computer using an industry-approved library. Yet, it is not just that they're equal, quantum encryption would be far worse. We don't use one-time pads in practice despite their security because they require keys as long as the message itself, and thus if we adopted them, it would cut the whole internet bandwidth in half overnight. Pseudorandom number generators are superior to use as the basis for cryptography because the key can be very small and then it can spit out the rest of what is needed to encrypt/decrypt the message from it, and deterministic encryption/decryption algorithms like AES and ChaCha20 are not crackable even by a quantum computer.

[–] bunchberry 4 points 14 hours ago* (last edited 14 hours ago)

Honestly, the random number generation on quantum computers is practically useless. Speeds will not get anywhere near as close to a pseudorandom number generator, and there are very simple ones you can implement that are blazing fast, far faster than any quantum computer will spit out, and produce numbers that are widely considered in the industry to be cryptographically secure. You can use AES for example as a PRNG and most modern CPUs like x86 processor have hardware-level AES implementation. This is why modern computers allow you to encrypt your drive, because you can have like a file that is a terabyte big that is encrypted but your CPU can decrypt it as fast as it takes for the window to pop up after you double-click it.

While PRNG does require an entropy pool, the entropy pool does not need to be large, you can spit out terabytes of cryptographically secure pseudorandom numbers on a fraction of a kilobyte of entropy data, and again, most modern CPUs actually include instructions to grab this entropy data, such as Intel's CPUs have an RDSEED instruction which let you grab thermal noise from the CPU. In order to avoid someone discovering a potential exploit, most modern OSes will mix into this pool other sources as well, like fluctuations in fan voltage.

Indeed, used to with Linux, you had a separate way to read random numbers directly from the entropy pool and another way to read pseudorandom numbers, those being /dev/random and /dev/urandom. If you read from the entropy pool, if it ran out, the program would freeze until it could collect more, so some old Linux programs you would see the program freeze until you did things like move your mouse around.

But you don't see this anymore because generating enormous amounts of cryptographysically secure random nubmers is so easy with modern algorithms that modern Linux just collects a little bit of entropy at boot and it uses that to generate all pseudorandom numbers after, and just got rid of needing to read it directly, both /dev/random and /dev/urandom now just internally in the OS have the same behavior. Any time your PC needs a random number it just pulls from the pseudorandom number generator that was configured at boot, and you have just from the short window of collecting entropy data at boot the ability to generate sufficient pseudorandom numbers basically forever, and these are the numbers used for any cryptographic application you may choose to run.

The point of all this is to just say random number generation is genuinely a solved problem, people don't get just how easy it is to basically produce practically infinite cryptographically secure pseudorandom numbers. While on paper quantum computers are "more secure" because their random numbers would be truly random, in practice you literally would never notice a difference. If you gave two PhD mathematicians or statisticians the same message, one encrypted using a quantum random number generator and one encrypted with a PRNG like AES or ChaCha20, and asked them to decipher them, they would not be able to decipher either. In fact, I doubt they would even be able to identify which one was even encoded using the quantum random number generator. A string of random numbers looks just as "random" to any random number test suite whether or not it came from a QRNG or a high-quality PRNG (usually called CSPRNG).

I do think at least on paper quantum computers could be a big deal if the engineering challenge can ever be overcome, but quantum cryptography such as "the quantum internet" are largely a scam. All the cryptographic aspects of quantum computers are practically the same, if not worse, than traditional cryptography, with only theoretical benefits that are technically there on paper but nobody would ever notice in practice.

[–] bunchberry 5 points 1 day ago* (last edited 1 day ago) (3 children)

It depends upon what you use ChatGPT for and if you know how to use it productively. For example if I ask ChatGPT coding questions it is often very helpful. If I ask it history questions it constantly makes things up. You also again need to know how to use it, like people who claim ChatGPT is not helpful for coding you ask them how they use it and they basically just ask ChatGPT to do their whole project for them and when it fails they claim it is useless. But that's not the productive way to use it, the productive way to use it is like a replacement for StackOverflow or to provide you examples of how to use some library, or things like that, not doing your whole project for you. Of course, people often use it incorrectly so it's probably not a good idea to allow its use in the workplace, but for individual use it can be very helpful.

[–] bunchberry 1 points 3 days ago* (last edited 3 days ago)

the study that found the universe is not locally real. Things only happen once they are observed

This is only true if you operate under a very specific and strict criterion of "realism" known as metaphysical realism. Einstein put forward a criterion of what he thought this philosophy implied for a physical theory, and his criterion is sometimes called scientific realism.

Metaphysical realism is a very complex philosophy. One of its premises is that there exists an "absolute" reality where all objects are made up of properties that are independent of perspective. Everything we perceive is wholly dependent upon perspective, so metaphysical realism claims that what we perceive is not "true" reality but sort of an illusion created by the brain. "True" reality is then treated as the absolute spacetime filled with particles captured in the mathematics of Newton's theory.

The reason it relies on this premise is because by assigning objects perspective invariant properties, then they can continue to exist even if no other object is interacting with them, or, more specifically, they continue to exist even if "no one is looking at them." For example, if you fire a cannonball from point A to point B, and you only observe it leaving point A and arriving at point B, Newtonian mechanics allows you to "track" its path between these two points even if you did not observe it.

The problem is that you cannot do this in quantum mechanics. If you fire a photon from point A to point B, the theory simply disallows you from unambiguously filling in the "gaps" between the two points. People then declare that "realism is dead," but this is a bit misleading because this is really only a problem for metaphysical/scientific realism. There are many other kinds of realism in literature.

For example, the philosopher Jocelyn Benoist's contextual realism argues that the exact opposite. The mathematical theory is not "true reality" but is instead a description of reality. A description of reality is not the same as reality. Would a description of the Eiffel Tower substitute actually seeing it in reality? Of course not, they're not the same. Contextual realism instead argues that what is real is not the mathematical description but is precisely what we perceive. The reason we perceive reality in a way that depends upon perspective is because reality is just relative (or "contextual"). There is no "absolute" reality but only a contextual reality and that contextual reality we perceive directly as it really is.

Thus for contextual realism, there is no issue with the fact that we cannot "track" things unambiguously, because it has no attachment to treating particles as if they persist as autonomous entities. It is perfectly fine with just treating it as if the particle hops from point A to point B according to some predictable laws and relative to the context in which the observer occupies. That is just how objective reality works. Observation isn't important, and indeed, not even measurement, because whatever you observe in the experimental setting is just what reality is like in that context. The only thing that "arises" is your identification.

[–] bunchberry 2 points 3 days ago* (last edited 3 days ago) (1 children)

Why did physicists start using the word "real" and "realism"? It's a philosophical term, not a physical one, and it leads to a lot of confusion. "Local" has a clear physical meaning, "realism" gets confusing. I have seen some papers that use "realism" in a way that has a clear physical definition, such as one I came across defined it in terms of a hidden variable theory. Yet, I also saw a paper coauthored by the great Anton Zeilinger that speaks of "local realism," but very explicitly uses "realism" with its philosophical meaning, that there is an objective reality independent of the observer, which to me it is absurd to pretend that physics in any way calls this into account.

If you read John Bell's original paper "On the Einstein Podolsky Rosen Paradox," he never once use the term "realism." The only time I have seen "real" used at all in this early discourse is in the original EPR paper, but this was merely a "criterion" (meaning a minimum but not sufficient condition) for what would constitute a theory that is a complete description of reality. Einstein/Podolsky/Rosen in no way presented this as a definition of "reality" or a kind of "realism."

Indeed, even using the term "realism" on its own is ambiguous, as there are many kinds of "realisms" in the literature. The phrase "local realism" on its own is bound to lead to confusion, and it does, because I pointed out, even in the published literature physicists do not always use "realism" consistently. If you are going to talk about "realism," you need to preface it to be clear what kind of realism you are specifically talking about.

If the reason physicists started to talk about "realism" is because they specifically are referring to something that includes the EPR criterion, then they should call it "EPR realism" or something like that. Just saying "realism" is so absurdly ridiculous it is almost as if they are intentionally trying to cause confusion. I don't really blame anyone who gets confused on this because like I said if you even read the literature there is not even consistent usage in the peer-reviewed papers.

The phrase "observer-dependence" is also very popular in the published literature. So, while I am not disagreeing with you that "observation" is just an interaction, this is actually a rather uncommon position known as relational quantum mechanics.

view more: next ›