cross-posted from: https://lemmy.world/post/23071801
Considering a lot of people here are self-hosting both private stuff, like a NAS and also some other is public like websites and whatnot, how do you approach segmentation in the context of virtual machines versus dedicated machines?
This is generally how I see the community action on this:
Scenario 1: Fully Isolated Machine for Public Stuff
Two servers one for the internal stuff (NAS) and another for the public stuff totally isolated from your LAN (websites, email etc). Preferably with a public IP that is not the same as your LAN and the traffic to that machines doesn't go through your main router. Eg. a switch between the ISP ONT and your router that also has a cable connected for the isolated machine. This way the machine is completely isolated from your network and not dependent on it.
Scenario 2: Single server with VM exposed
A single server hosting two VMs, one to host a NAS along with a few internal services running in containers, and another to host publicly exposed websites. Each website could have its own container inside the VM for added isolation, with a reverse proxy container managing traffic.
For networking, I typically see two main options:
- Option A: Completely isolate the "public-facing" VM from the internal network by using a dedicated NIC in passthrough mode for the VM;
- Option B: Use a switch to deliver two VLANs to the host—one for the internal network and one for public internet access. In this scenario, the host would have two VLAN-tagged interfaces (e.g., eth0.X) and bridge one of them with the "public" VM’s network interface. Here’s a diagram for reference: https://ibb.co/PTkQVBF
In the second option, a firewall would run inside the "public" VM to drop all inbound except for http traffic. The host would simply act as a bridge and would not participate in the network in any way.
Scenario 3: Exposed VM on a Windows/Linux Desktop Host
Windows/Linux desktop machine that runs KVM/VirtualBox/VMware to host a VM that is directly exposed to the internet with its own public IP assigned by the ISP. In this setup, a dedicated NIC would be passed through to the VM for isolation.
The host OS would be used as a personal desktop and contain sensitive information.
Scenario 4: Dual-Boot Between Desktop and Server
A dual-boot setup where the user switches between a OS for daily usage and another for hosting stuff when needed (with a public IP assigned by the ISP). The machine would have a single Ethernet interface and the user would manually switch network cables between: a) the router (NAT/internal network) when running the "personal" OS and b) a direct connection to the switch (and ISP) when running the "public/hosting" OS.
For increased security, each OS would be installed on a separate NVMe drive, and the "personal" one would use TPM with full disk encryption to protect sensitive data. If the "public/hosting" system were compromised.
The theory here is that, if properly done, the TPM doesn't release the keys to decrypt the "personal" disk OS when the user is booted into the "public/hosting" OS.
People also seem to combine both scenarios with Cloudflare tunnels or reverse proxies on cheap VPS.
What's your approach / paranoia level :D
Do you think using separate physical machines is really the only sensible way to go? How likely do you think VM escape attacks and VLAN hopping or other networking-based attacks are?
Let's discuss how secure these setups are, what pitfalls one should watch out for on each one, and what considerations need to be addressed.
I don't disagree with you, I believe it as well. PGP is it stands is cumbersome.
The thing is that could've still implemented a easy-to-use, "just login and send email" type of web client and abstracted the user from the PGP complexities while still delivering everything over IMAP/SMTP.
You assume correctly, but when your mail client is trying to send an email instead of using SMTP to submit to their server, you're using a proprietary API in a proprietary format and the same goes for receiving email.
This is well documented and to prove it further if you want to configure Proton in a generic mail client like Thunderbird then you're required to install a "birdge", a piece of software that essentially simulates a local IMAP and SMPT server (that Thunderbird communicates with) and then will convert those requests into requests their proprietary API understands. There are various issues with this approach the most obvious one is that it is an extra step, there's also the issue that in iOS for eg. you're forced to use their mail app because you can't run the bridge there.
The bridge is an afterthought to support generic email clients and generic protocols, only works how and where they say it should work and may be taken away at any point.
Delivering your data over proprietary APIs doesn't count as "open standards" - sorry.