this post was submitted on 13 Dec 2024
18 points (90.9% liked)

Advent Of Code

920 readers
56 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 18 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 13: Claw Contraption

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

top 29 comments
sorted by: hot top controversial new old
[–] mykl 2 points 3 days ago* (last edited 3 days ago)

Uiua

Pretty much just a transcription of my Dart solution.

Data  ← ⊜(⊜(βŠœβ‹•βŠΈβˆˆ"0123456789")βŠΈβ‰ @\n)⊸(Β¬β¦·"\n\n")"Button A: X+94, Y+34\nButton B: X+22, Y+67\nPrize: X=8400, Y=5400\n\nButton A: X+26, Y+66\nButton B: X+67, Y+21\nPrize: X=12748, Y=12176\n\nButton A: X+17, Y+86\nButton B: X+84, Y+37\nPrize: X=7870, Y=6450\n\nButton A: X+69, Y+23\nButton B: X+27, Y+71\nPrize: X=18641, Y=10279"
IsInt ← <0.00001⌡-⁅.
AB    ← Γ·Β°βŠ‚β‰‘(/-Γ—β‡ŒΒ°βŠŸ)⊏[0_1 2_1 0_2]
Cost  ← /+Γ—IsInt.Γ—3_1AB
&p /+≑Cost Data
&p /+≑(Cost⍜(⊑2|+1e13))Data
[–] mykl 7 points 4 days ago* (last edited 3 days ago) (1 children)

I have nothing. I hate Diophantine equations. That is all I have to say today.

(edit) I came back to it after a 24 hour break. All that nonsense about scoring multiple results really took me in yesterday.

import 'dart:math';
import 'package:collection/collection.dart';

List<List<Point<int>>> getMachines(List<String> lines) => lines
    .splitBefore((e) => e == '')
    .map((m) => m
        .whereNot((e) => e.isEmpty)
        .map((l) => RegExp(r'(\d+)')
            .allMatches(l)
            .map((m) => int.parse(m.group(0)!))
            .toList())
        .map((pr) => Point(pr.first, pr.last))
        .toList())
    .toList();

bool isInteger(num n) => (n - n.round()).abs() < 0.00001;

int cost(Point a, Point b, Point goal) {
  var resA = (goal.x * b.y - goal.y * b.x) / (a.x * b.y - a.y * b.x);
  var resB = (a.x * goal.y - a.y * goal.x) / (a.x * b.y - a.y * b.x);
  return (isInteger(resA) && isInteger(resB))
      ? resA.round() * 3 + resB.round() * 1
      : 0;
}

int solve(mx, p) => [for (var m in mx) cost(m[0], m[1], m[2] + p)].sum;

const large = Point(10000000000000, 10000000000000);
part1(List<String> lines) => solve(getMachines(lines), Point(0, 0));
part2(List<String> lines) => solve(getMachines(lines), large);
[–] [email protected] 3 points 3 days ago (1 children)

Well done! I like how you're just looking for four integers instead of bothering with parsing the rest of the line.

[–] mykl 3 points 3 days ago

I thought that would be easier but then ended up with that monstrous function, but that's all that's left of yesterday's terrible mess, so it stays :-)

[–] VegOwOtenks 4 points 5 days ago* (last edited 5 days ago)

Haskell

Pen and Paper solved these equations for me.

import Control.Arrow

import qualified Data.Char as Char
import qualified Data.List as List
import qualified Data.Maybe as Maybe


window6 :: [Int] -> [[Int]]
window6 [] = []
window6 is = List.splitAt 6 
        >>> second window6
        >>> uncurry (:)
        $ is

parse :: String -> [[Int]]
parse s = window6 . map read . words . List.filter ((Char.isDigit &&& Char.isSpace) >>> uncurry (||)) $ s

solveEquation (ax:ay:bx:by:tx:ty:[]) transformT
        | (aNum `mod` aDenom) /= 0   = Nothing
        | (bNum `mod` bDenom) /= 0   = Nothing
        | otherwise                  = Just (abs $ aNum `div` aDenom, abs $ bNum `div` bDenom)
        where
                tx' = transformT tx
                ty' = transformT ty
                aNum   = (bx*ty')  - (by*tx')
                aDenom = (ax*by)   - (bx*ay)
                bNum   = (ax*ty')  - (ay*tx')
                bDenom = (ax*by)   - (bx*ay)

part1 = map (flip solveEquation id)
        >>> Maybe.catMaybes
        >>> map (first (*3))
        >>> map (uncurry (+))
        >>> sum
part2 = map (flip solveEquation (+ 10000000000000))
        >>> Maybe.catMaybes
        >>> map (first (*3))
        >>> map (uncurry (+))
        >>> sum

main = getContents
        >>= print
        . (part1 &&& part2)
        . parse

(Edit: coding style)

[–] [email protected] 2 points 4 days ago

Rust

Hardest part was parsing the input, i somehow forgot how regexes work and wasted hours.

Learning how to do matrix stuff in rust was a nice detour as well.

#[cfg(test)]
mod tests {
    use nalgebra::{Matrix2, Vector2};
    use regex::Regex;

    fn play_game(ax: i128, ay: i128, bx: i128, by: i128, gx: i128, gy: i128) -> i128 {
        for a_press in 0..100 {
            let rx = gx - ax * a_press;
            let ry = gy - ay * a_press;
            if rx % bx == 0 && ry % by == 0 && rx / bx == ry / by {
                return a_press * 3 + ry / by;
            }
        }
        0
    }

    fn play_game2(ax: i128, ay: i128, bx: i128, by: i128, gx: i128, gy: i128) -> i128 {
        // m * p = g
        // p = m' * g
        // |ax bx|.|a_press| = |gx|
        // |ay by| |b_press|   |gy|
        let m = Matrix2::new(ax as f64, bx as f64, ay as f64, by as f64);
        match m.try_inverse() {
            None => return 0,
            Some(m_inv) => {
                let g = Vector2::new(gx as f64, gy as f64);
                let p = m_inv * g;
                let pa = p[0].round() as i128;
                let pb = p[1].round() as i128;
                if pa * ax + pb * bx == gx && pa * ay + pb * by == gy {
                    return pa * 3 + pb;
                }
            }
        };
        0
    }

    #[test]
    fn day13_part1_test() {
        let input = std::fs::read_to_string("src/input/day_13.txt").unwrap();
        let re = Regex::new(r"[0-9]+").unwrap();

        let games = input
            .trim()
            .split("\n\n")
            .map(|line| {
                re.captures_iter(line)
                    .map(|x| {
                        let first = x.get(0).unwrap().as_str();
                        first.parse::<i128>().unwrap()
                    })
                    .collect::<Vec<i128>>()
            })
            .collect::<Vec<Vec<i128>>>();

        let mut total = 0;
        for game in games {
            let cost = play_game2(game[0], game[1], game[2], game[3], game[4], game[5]);
            total += cost;
        }
        // 36870
        println!("{}", total);
    }

    #[test]
    fn day12_part2_test() {
        let input = std::fs::read_to_string("src/input/day_13.txt").unwrap();
        let re = Regex::new(r"[0-9]+").unwrap();

        let games = input
            .trim()
            .split("\n\n")
            .map(|line| {
                re.captures_iter(line)
                    .map(|x| {
                        let first = x.get(0).unwrap().as_str();
                        first.parse::<i128>().unwrap()
                    })
                    .collect::<Vec<i128>>()
            })
            .collect::<Vec<Vec<i128>>>();

        let mut total = 0;
        for game in games {
            let cost = play_game2(
                game[0],
                game[1],
                game[2],
                game[3],
                game[4] + 10000000000000,
                game[5] + 10000000000000,
            );
            total += cost;
        }
        println!("{}", total);
    }
}
[–] [email protected] 2 points 4 days ago* (last edited 4 days ago) (1 children)

C

"The cheapest way" "the fewest tokens", that evil chap!

I'm on a weekend trip and thought to do the puzzle in the 3h train ride but I got silly stumped on 2D line intersection*, was too stubborn to look it up, and fell asleep 🀑

When I woke up, so did the little nugget of elementary algebra somewhere far in the back of my mind. Tonight I finally got to implementing, which was smooth sailing except for this lesson I learnt:

int64 friends don't let int64 friends play with float32s.

*) on two parts:

  1. how can you capture a two-dimensional problem in a linear equation (ans: use slopes), and
  2. what unknown was I supposed to be finding? (ans: either x or y of intersection will do)

Code

#include "common.h"

static int64_t
score(int ax, int ay, int bx, int by, int64_t px, int64_t py)
{
	int64_t a,b, x;
	double as,bs;

	as = (double)ay / ax;
	bs = (double)by / bx;

	/* intersection between a (from start) and b (from end) */
	x = (int64_t)round((px*bs - py) / (bs-as));

	a = x / ax;
	b = (px-x) / bx;

	return
	    a*ax + b*bx == px &&
	    a*ay + b*by == py ? a*3 + b : 0;
}

int
main(int argc, char **argv)
{
	int ax,ay, bx,by;
	int64_t p1=0,p2=0, px,py;

	if (argc > 1)
		DISCARD(freopen(argv[1], "r", stdin));
	
	while (scanf(
	    " Button A: X+%d, Y+%d"
	    " Button B: X+%d, Y+%d"
	    " Prize: X=%"SCNd64", Y=%"SCNd64,
	    &ax, &ay, &bx, &by, &px, &py) == 6) {
		p1 += score(ax,ay, bx,by, px,py);
		p2 += score(ax,ay, bx,by,
		    px + 10000000000000LL,
		    py + 10000000000000LL);
	}

	printf("13: %"PRId64" %"PRId64"\n", p1, p2);
	return 0;
}

https://github.com/sjmulder/aoc/blob/master/2024/c/day13.c

[–] [email protected] 1 points 4 days ago

Line intersection is a nice way of looking at it. My immediate thought was "change of basis".

[–] Acters 3 points 5 days ago* (last edited 3 days ago) (2 children)

Python

Execution time: ~<1 millisecond (800 microseconds on my machine)

Good old school linear algebra from middle school. we can solve this really really fast. With minimal changes from part 1!

FastCode[ paste ]

from time import perf_counter_ns
import string

def profiler(method):
    def wrapper_method(*args: any, **kwargs: any) -> any:
        start_time = perf_counter_ns()
        ret = method(*args, **kwargs)
        stop_time = perf_counter_ns() - start_time
        time_len = min(9, ((len(str(stop_time))-1)//3)*3)
        time_conversion = {9: 'seconds', 6: 'milliseconds', 3: 'microseconds', 0: 'nanoseconds'}
        print(f"Method {method.__name__} took : {stop_time / (10**time_len)} {time_conversion[time_len]}")
        return ret

    return wrapper_method

@profiler
def main(input_data):
    part1_total_cost = 0
    part2_total_cost = 0
    for machine in input_data:
        Ax,Ay,Bx,By,Px,Py = [ int(l[2:]) for l in machine.split() if l[-1] in string.digits ]
        y,r = divmod((Ay * Px - Ax * Py), (Ay * Bx - Ax * By))
        if r == 0:
            x,r = divmod(Px - Bx * y, Ax)
            if r == 0:
                part1_total_cost += 3*x + y
        y,r = divmod((Ay * (Px+10000000000000) - Ax * (Py+10000000000000)), (Ay * Bx - Ax * By))
        if r == 0:
            x,r = divmod((Px+10000000000000) - Bx * y, Ax)
            if r == 0:
                part2_total_cost += 3*x + y

    return part1_total_cost,part2_total_cost

if __name__ == "__main__":
    with open('input', 'r') as f:
        input_data = f.read().strip().replace(',', '').split('\n\n')
    part_one, part_two = main(input_data)
    print(f"Part 1: {part_one}\nPart 2: {part_two}")

[–] [email protected] 2 points 4 days ago (2 children)

It's interesting that you're not checking if the solution to x is a whole number. I guess the data doesn't contain any counterexamples.

[–] Acters 3 points 4 days ago* (last edited 4 days ago) (1 children)

we are solving for y first. If there is a y then x is found easily.

(Ax)*x + (Bx)*y = Px and (Ay)*x + (By)*y = Py

Because of Ax or Ay and Bx or By, lets pretend that they are not (A*x)*x and (A*y)*y for both. they are just names. could be rewritten as: (Aleft)*x + (Bleft)*y = Pleft and (Aright)*x + (Bright)*y = Pright

but I will keep them short. solving for y turns into this:

y = (Ay*Px - Ax*Py) / (Ay*Bx - Ax*By)

if mod of 1 is equal to 0 then there is a solution. We can be confident that x is also a solution, too. Could there be an edge case? I didn't proof it, but it works flawlessly for my solution.

Thankfully, divmod does both division and mod of 1 at the same time.

[–] [email protected] 2 points 4 days ago* (last edited 4 days ago) (1 children)

Thank you so much for your explanation! I kind of found some clues looking up perp dot products & other vector math things, but this breaks it down very nicely.

I implemented your solution in rust, and part 2 failed by +447,761,194,259 (this was using signed 64-bit integers, i64). When I changed it to use signed 64 bit floating-point f64 and checked that the solution for x produces a whole number it worked.

[–] Acters 3 points 4 days ago (1 children)

Did you run my python code as is? I would hope it works for everyone. though, I am unsure what the edge cases are, then.

[–] [email protected] 1 points 3 days ago (1 children)

I did run your code as-is in an ipython REPL to check. These were the results:

REPL session

# With unmodified `main` function & `import string` not shown
In [4]: with open("inputs/day13.txt", "r") as f:
   ...:     input_data = f.read().strip().replace(',', '').split('\n\n')
   ...:

In [5]: part_one, part_two = main(input_data)

In [6]: part_one
Out[6]: 39748

In [7]: part_two
Out[7]: 74926346266863

# Then I modified the function to check if x is fractional
In [8]: def main(input_data):
   ...:     part1_total_cost = 0
   ...:     part2_total_cost = 0
   ...:     for machine in input_data:
   ...:         Ax,Ay,Bx,By,Px,Py = [ int(l[2:]) for l in machine.split() if l[-1] in string.digits ]
   ...:         y,r = divmod((Ay * Px - Ax * Py), (Ay * Bx - Ax * By))
   ...:         if r == 0:
   ...:             x = (Px - Bx * y) / Ax
   ...:             if x % 1 == 0:
   ...:                 part1_total_cost += 3*x + y
   ...:         y,r = divmod((Ay * (Px+10000000000000) - Ax * (Py+10000000000000)), (Ay * Bx - Ax * By))
   ...:         if r == 0:
   ...:             x = ((Px+10000000000000) - Bx * y) / Ax
   ...:             if x % 1 == 0:
   ...:                 part2_total_cost += 3*x + y
   ...:
   ...:     return part1_total_cost,part2_total_cost
   ...:

In [9]: part_one, part_two = main(input_data)

In [10]: part_one
Out[10]: 39748.0

In [11]: part_two
Out[11]: 74478585072604.0  # Correct answer for pt 2 of my input

If you're curious to check against my puzzle input, it's here

Thank you again for the back & forth, and for sharing your solution!

[–] Acters 2 points 3 days ago (1 children)

there is exactly ONE "machine" that causes your result to be incorrect. ONLY for part 2.

Button A: X+67, Y+67
Button B: X+16, Y+73
Prize: X=4877, Y=7214

I see now what your corner case causes. so when my script solves for y first. it will be exact. BUT when you solve for x, it will be not divisible... makes sense now. I didn't expect this. This only occurs because of part 2! so dastardly. well, that was interesting. I guess I am forced to add that extra check... rip those microsecond gains.

[–] [email protected] 1 points 2 days ago

Ooh that is tricky of them. Good catch!

[–] VegOwOtenks 1 points 4 days ago* (last edited 4 days ago) (1 children)

They do, if the remainder returned by divmod(...) wasn't zero then it wouldn't be divisble

[–] Acters 2 points 4 days ago

you are right, we solve for y, but I am confident that solving for x after y would yield the correct result as long as y is fully divisible.

[–] [email protected] 2 points 4 days ago (1 children)

This is a really excellent, clean solution! Would you mind breaking down how the piece of linear algebra works (for a shmo like me who doesn't remember that stuff frum school heh πŸ˜…)

[–] Acters 3 points 4 days ago

https://lemmy.world/comment/13950499

take the two equations, solve for y, and make sure y is fully divisible.

[–] [email protected] 3 points 5 days ago

Haskell

Whee, linear algebra! Converting between numeric types is a bit annoying in Haskell, but I'm reasonably happy with this solution.

import Control.Monad
import Data.Matrix qualified as M
import Data.Maybe
import Data.Ratio
import Data.Vector qualified as V
import Text.Parsec

type C = (Int, Int)

readInput :: String -> [(C, C, C)]
readInput = either (error . show) id . parse (machine `sepBy` newline) ""
  where
    machine = (,,) <$> coords <*> coords <*> coords
    coords =
      (,)
        <$> (manyTill anyChar (string ": X") >> anyChar >> num)
        <*> (string ", Y" >> anyChar >> num)
        <* newline
    num = read <$> many1 digit

presses :: (C, C, C) -> Maybe C
presses ((ax, ay), (bx, by), (px, py)) =
  do
    let m = fromIntegral <$> M.fromLists [[ax, bx], [ay, by]]
    m' <- either (const Nothing) Just $ M.inverse m
    let [a, b] = M.toList $ m' * M.colVector (fromIntegral <$> V.fromList [px, py])
    guard $ denominator a == 1
    guard $ denominator b == 1
    return (numerator a, numerator b)

main = do
  input <- readInput <$> readFile "input13"
  mapM_
    (print . sum . map (\(a, b) -> 3 * a + b) . mapMaybe presses)
    [ input,
      map (\(a, b, (px, py)) -> (a, b, (10000000000000 + px, 10000000000000 + py))) input
    ]
[–] [email protected] 2 points 4 days ago

Rust

This problem is basically a linear system, which can be solved by inverting the 2x2 matrix of button distances. I put some more detail in the comments.

Solution

use std::sync::LazyLock;

use regex::Regex;

#[derive(Debug)]
struct Machine {
    a: (i64, i64),
    b: (i64, i64),
    prize: (i64, i64),
}

impl Machine {
    fn tokens_100(&self) -> i64 {
        for b in 0..=100 {
            for a in 0..=100 {
                let pos = (self.a.0 * a + self.b.0 * b, self.a.1 * a + self.b.1 * b);
                if pos == self.prize {
                    return b + 3 * a;
                }
            }
        }
        0
    }

    fn tokens_inv(&self) -> i64 {
        // If [ab] is the matrix containing our two button vectors: [ a.0 b.0 ]
        //                                                          [ a.1 b.1 ]
        // then prize = [ab] * x, where x holds the number of required button presses
        // for a and b, (na, nb).
        // By inverting [ab] we get
        //
        // x = [ab]⁻¹ * prize
        let det = (self.a.0 * self.b.1) - (self.a.1 * self.b.0);
        if det == 0 {
            panic!("Irregular matrix");
        }
        let det = det as f64;
        // The matrix [ a b ] is the inverse of [ a.0 b.0 ] .
        //            [ c d ]                   [ a.1 b.1 ]
        let a = self.b.1 as f64 / det;
        let b = -self.b.0 as f64 / det;
        let c = -self.a.1 as f64 / det;
        let d = self.a.0 as f64 / det;
        // Multiply [ab] * prize to get the result
        let na = self.prize.0 as f64 * a + self.prize.1 as f64 * b;
        let nb = self.prize.0 as f64 * c + self.prize.1 as f64 * d;

        // Only integer solutions are valid, verify rounded results:
        let ina = na.round() as i64;
        let inb = nb.round() as i64;
        let pos = (
            self.a.0 * ina + self.b.0 * inb,
            self.a.1 * ina + self.b.1 * inb,
        );
        if pos == self.prize {
            inb + 3 * ina
        } else {
            0
        }
    }

    fn translate(&self, tr: i64) -> Self {
        let prize = (self.prize.0 + tr, self.prize.1 + tr);
        Machine { prize, ..*self }
    }
}

impl From<&str> for Machine {
    fn from(s: &str) -> Self {
        static RE: LazyLock<(Regex, Regex)> = LazyLock::new(|| {
            (
                Regex::new(r"Button [AB]: X\+(\d+), Y\+(\d+)").unwrap(),
                Regex::new(r"Prize: X=(\d+), Y=(\d+)").unwrap(),
            )
        });
        let (re_btn, re_prize) = &*RE;
        let mut caps = re_btn.captures_iter(s);
        let (_, [a0, a1]) = caps.next().unwrap().extract();
        let a = (a0.parse().unwrap(), a1.parse().unwrap());
        let (_, [b0, b1]) = caps.next().unwrap().extract();
        let b = (b0.parse().unwrap(), b1.parse().unwrap());
        let (_, [p0, p1]) = re_prize.captures(s).unwrap().extract();
        let prize = (p0.parse().unwrap(), p1.parse().unwrap());
        Machine { a, b, prize }
    }
}

fn parse(input: String) -> Vec<Machine> {
    input.split("\n\n").map(Into::into).collect()
}

fn part1(input: String) {
    let machines = parse(input);
    let sum = machines.iter().map(|m| m.tokens_100()).sum::<i64>();
    println!("{sum}");
}

const TRANSLATION: i64 = 10000000000000;

fn part2(input: String) {
    let machines = parse(input);
    let sum = machines
        .iter()
        .map(|m| m.translate(TRANSLATION).tokens_inv())
        .sum::<i64>();
    println!("{sum}");
}

util::aoc_main!();

Also on github

[–] [email protected] 2 points 4 days ago (1 children)

Haskell, 14 ms. The hardest part was the parser today. I somehow thought that the buttons could have negative values in X or Y too, so it's a bit overcomplicated.

import Text.ParserCombinators.ReadP

int, signedInt :: ReadP Int
int = read <$> (many1 $ choice $ map char ['0' .. '9'])
signedInt = ($) <$> choice [id <$ char '+', negate <$ char '-'] <*> int

machine :: ReadP ((Int, Int), (Int, Int), (Int, Int))
machine = do
    string "Button A: X"
    xa <- signedInt
    string ", Y"
    ya <- signedInt
    string "\nButton B: X"
    xb <- signedInt
    string ", Y"
    yb <- signedInt
    string "\nPrize: X="
    x0 <- int
    string ", Y="
    y0 <- int
    return ((xa, ya), (xb, yb), (x0, y0))

machines :: ReadP [((Int, Int), (Int, Int), (Int, Int))]
machines = sepBy machine (string "\n\n")

calc :: ((Int, Int), (Int, Int), (Int, Int)) -> Maybe (Int, Int)
calc ((ax, ay), (bx, by), (x0, y0)) = case
        ( (x0 * by - y0 * bx) `divMod` (ax * by - ay * bx)
        , (x0 * ay - y0 * ax) `divMod` (bx * ay - by * ax)
        ) of
    ((a, 0), (b, 0)) -> Just (a, b)
    _                -> Nothing

enlarge :: (a, b, (Int, Int)) -> (a, b, (Int, Int))
enlarge (u, v, (x0, y0)) = (u, v, (10000000000000 + x0, 10000000000000 + y0))

solve :: [((Int, Int), (Int, Int), (Int, Int))] -> Int
solve ts = sum
    [ 3 * a + b
    | Just (a, b) <- map calc ts
    ]

main :: IO ()
main = do
    ts <- fst . last . readP_to_S machines <$> getContents
    mapM_ (print . solve) [ts, map enlarge ts]
[–] [email protected] 3 points 4 days ago (1 children)

I wasted hours on the parsing, because my regex ([0-9]*) was giving me empty strings. Made me feel very dumb when I worked it out

[–] [email protected] 2 points 4 days ago

Oops! Took me a while to spot it from your comment, too, so don't feel too bad :)

[–] [email protected] 2 points 4 days ago

C#

Thank goodness for high school algebra!

using System.Diagnostics;
using Common;

namespace Day13;

static class Program
{
    static void Main()
    {
        var start = Stopwatch.GetTimestamp();

        var sampleInput = Input.ParseInput("sample.txt");
        var programInput = Input.ParseInput("input.txt");

        Console.WriteLine($"Part 1 sample: {Part1(sampleInput)}");
        Console.WriteLine($"Part 1 input: {Part1(programInput)}");

        Console.WriteLine($"Part 2 sample: {Part2(sampleInput)}");
        Console.WriteLine($"Part 2 input: {Part2(programInput)}");

        Console.WriteLine($"That took about {Stopwatch.GetElapsedTime(start)}");
    }

    static object Part1(Input i) => i.Machines
        .Select(m => CalculateCoins(m, 100))
        .Where(c => c > 0)
        .Sum();

    static object Part2(Input i) => i.Machines
        .Select(m => m with { Prize = new XYValues(
            m.Prize.X + 10000000000000,
            m.Prize.Y + 10000000000000) })
        .Select(m => CalculateCoins(m, long.MaxValue))
        .Where(c => c > 0)
        .Sum();

    static long CalculateCoins(Machine m, long limit)
    {
        var bBottom = (m.A.X * m.B.Y) - (m.A.Y * m.B.X);
        if (bBottom == 0) return -1;

        var bTop = (m.Prize.Y * m.A.X) - (m.Prize.X * m.A.Y);
        var b = bTop / bBottom;
        if ((b <= 0) || (b > limit)) return -1;
        
        var a = (m.Prize.X - (b * m.B.X)) / m.A.X;
        if ((a <= 0) || (a > limit)) return -1;

        var calcPrizeX = (a * m.A.X) + (b * m.B.X);
        var calcPrizeY = (a * m.A.Y) + (b * m.B.Y);
        if ((m.Prize.X != calcPrizeX) || (m.Prize.Y != calcPrizeY)) return -1;

        return (3 * a) + b;
    }
}

public record struct Machine(XYValues A, XYValues B, XYValues Prize);
public record struct XYValues(long X, long Y);

public class Input
{
    private Input()
    {
    }

    public List<Machine> Machines { get; init; }

    public static Input ParseInput(string file)
    {
        var machines = new List<Machine>();

        var lines = File.ReadAllLines(file);
        for(int l=0; l<lines.Length; l+=4)
        {
            machines.Add(new Machine(
                ParseXYValues(lines[l + 0]),
                ParseXYValues(lines[l + 1]),
                ParseXYValues(lines[l + 2])));
        }

        return new Input()
        {
            Machines = machines,
        };
    }

    private static readonly char[] XYDelimiters = ['X', 'Y', '=', '+', ',', ' '];

    private static XYValues ParseXYValues(string s)
    {
        var parts = s
            .Substring(s.IndexOf(':') + 1)
            .SplitAndTrim(XYDelimiters)
            .Select(long.Parse)
            .ToArray();
        
        return new XYValues(parts[0], parts[1]);
    }
}
[–] [email protected] 1 points 4 days ago

Nim

I'm embarrasingly bad with math. Couldn't have solved this one without looking up the solution. =C

type Vec2 = tuple[x,y: int64]

const
  PriceA = 3
  PriceB = 1
  ErrorDelta = 10_000_000_000_000

proc isInteger(n: float): bool = n.round().almostEqual(n)
proc `+`(a: Vec2, b: int): Vec2 = (a.x + b, a.y + b)

proc solveEquation(a, b, prize: Vec2): int =
  let res_a = (prize.x*b.y - prize.y*b.x) / (a.x*b.y - a.y*b.x)
  let res_b = (a.x*prize.y - a.y*prize.x) / (a.x*b.y - a.y*b.x)
  if res_a.isInteger and res_b.isInteger:
    res_a.int * PriceA + res_b.int * PriceB
  else: 0

proc solve(input: string): AOCSolution[int, int] =
  let chunks = input.split("\n\n")
  for chunk in chunks:
    let lines = chunk.splitLines()
    let partsA = lines[0].split({' ', ',', '+'})
    let partsB = lines[1].split({' ', ',', '+'})
    let partsC = lines[2].split({' ', ',', '='})

    let a = (parseBiggestInt(partsA[3]), parseBiggestInt(partsA[6]))
    let b = (parseBiggestInt(partsB[3]), parseBiggestInt(partsB[6]))
    let c = (parseBiggestInt(partsC[2]), parseBiggestInt(partsC[5]))

    result.part1 += solveEquation(a,b,c)
    result.part2 += solveEquation(a,b,c+ErrorDelta)
[–] [email protected] 2 points 4 days ago

C#

public partial class Day13 : Solver
{
  private record struct Button(int X, int Y);
  private record struct Machine(int X, int Y, Button A, Button B);
  private List<Machine> machines = [];

  [GeneratedRegex(@"^Button (A|B): X\+(\d+), Y\+(\d+)$")]
  private static partial Regex ButtonSpec();

  [GeneratedRegex(@"^Prize: X=(\d+), Y=(\d+)$")]
  private static partial Regex PrizeSpec();

  public void Presolve(string input) {
    var machine_specs = input.Trim().Split("\n\n").ToList();
    foreach (var spec in machine_specs) {
      var lines = spec.Split("\n").ToList();
      if (ButtonSpec().Match(lines[0]) is not { Success: true } button_a_match
        || ButtonSpec().Match(lines[1]) is not { Success: true } button_b_match
        || PrizeSpec().Match(lines[2]) is not { Success:true} prize_match) {
        throw new InvalidDataException($"parse error: ${lines}");
      }
      machines.Add(new Machine(
        int.Parse(prize_match.Groups[1].Value),
        int.Parse(prize_match.Groups[2].Value),
        new Button(int.Parse(button_a_match.Groups[2].Value), int.Parse(button_a_match.Groups[3].Value)),
        new Button(int.Parse(button_b_match.Groups[2].Value), int.Parse(button_b_match.Groups[3].Value))
        ));
    }
  }

  private string Solve(bool unit_conversion) {
    BigInteger total_cost = 0;
    foreach (var machine in machines) {
      long prize_x = machine.X + (unit_conversion ? 10000000000000 : 0);
      long prize_y = machine.Y + (unit_conversion ? 10000000000000 : 0);
      BigInteger det = machine.A.X * machine.B.Y - machine.B.X * machine.A.Y;
      if (det == 0) continue;
      BigInteger det_a = prize_x * machine.B.Y - machine.B.X * prize_y;
      BigInteger det_b = prize_y * machine.A.X - machine.A.Y * prize_x;
      var (a, a_rem) = BigInteger.DivRem(det_a, det);
      var (b, b_rem) = BigInteger.DivRem(det_b, det);
      if (a_rem != 0 || b_rem != 0) continue;
      total_cost += a * 3 + b;
    }
    return total_cost.ToString();
  }

  public string SolveFirst() => Solve(false);
  public string SolveSecond() => Solve(true);
}
[–] iAvicenna 2 points 5 days ago* (last edited 4 days ago)

Python

I just threw linear algebra and float64 on this question and it stuck. Initially in order to decrease the numbers a bit (to save precision) I tried to find greatest common divisors for the coordinates of the target but in many cases it was 1, so that was that went down the drain. Luckily float64 was able to achieve precisions up to 1e-4 and that was enough to separate wheat from chaff. So in the end I did not have to use exact formulas for the inverse of the matrix though probably would be a more satisfying solution if I did.


import numpy as np
from functools import partial
from pathlib import Path
cwd = Path(__file__).parent

def parse_input(file_path, correction):

  with file_path.open("r") as fp:
    instructions = fp.readlines()

  machine_instructions = []
  for ind in range(0,len(instructions)+1,4):

    mins = instructions[ind:ind+3]
    machine_instructions.append([])
    for i,s in zip(range(3),['+','+','=']):
      machine_instructions[-1].append([int(mins[i].split(',')[0].split(s)[-1]),
                                   int(mins[i].split(',')[1].split(s)[-1])])

    for i in range(2):
      machine_instructions[-1][-1][i] += correction

  return machine_instructions


def solve(threshold, maxn, vectors):

  c = np.array([3, 1])

  M = np.concat([np.array(vectors[0])[:,None],
                 np.array(vectors[1])[:,None]],axis=1).astype(int)

  if np.linalg.det(M)==0:
    return np.nan

  Minv = np.linalg.inv(M)
  nmoves = Minv @ np.array(vectors[2])

  if np.any(np.abs(nmoves - np.round(nmoves))>threshold) or\
    np.any(nmoves>maxn) or np.any(nmoves<0):
      return np.nan

  return np.sum(c * (Minv @ np.array(vectors[2])))


def solve_problem(file_name, correction, maxn, threshold=1e-4):
  # correction 0 or 10000000000000
  # maxn 100 or np.inf

  machine_instructions = parse_input(Path(cwd, file_name), correction)

  _solve = partial(solve, threshold, maxn)

  tokens = list(map(_solve, machine_instructions))

  return int(np.nansum(list(tokens)))