this post was submitted on 09 Oct 2023
124 points (96.3% liked)

Asklemmy

43945 readers
28 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy 🔍

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_[email protected]~

founded 5 years ago
MODERATORS
 

Asphalt used on road surfaces are byproducts from fossil fuel. With the ultimate goal of eliminating the use of fossil fuel to combat climate change, are there any good alternatives for road surfaces? I don't think I've ever heard of a viable replacement of asphalt in the works, or even a plan to replace it in any environmental discussions before. At least, not enough for me to notice.

Extented question would be: what are some products derived from fossil fuel that are used in everyday life, but still lack viable alternatives you don't see enough discussions about?

you are viewing a single comment's thread
view the rest of the comments
[–] fubo 24 points 1 year ago (2 children)

that a majority of road damage comes from heavy vehicles

Specifically, wear and tear on the road surface scales with the fourth power of vehicle weight.

As a worked example, this means that if we compare a 3-ton cargo van and a 1½-ton sedan, the cargo van weighs twice as much as the sedan, but it does sixteen times as much damage to the road.

https://en.wikipedia.org/wiki/Fourth_power_law

[–] [email protected] 4 points 1 year ago (2 children)

Axle load, actually. In theory a 1.5-ton car with two axles and a 3-ton truck with four equally loaded axles would cause the same amount of damage. A 1-ton unicycle would cause more damage than the truck.

Note, though, that this is a rule of thumb. A 50-ton tank is still a 50-ton tank even if you manage to make it have fifty tiny axles. But for fairly average motor vehicles under fairly average conditions it's close enough to be useful for planning.

[–] [email protected] 4 points 1 year ago (1 children)

Surely that's damage-per-axle? So it'd be two 1.5-ton cars to match the trucks 4 axles

[–] [email protected] 3 points 1 year ago

It could be, but I wouldn’t assume that it is.

I remember when calculating bridge wear, we were discussing the truck arriving on the bridge in terms of impact. It could be the damage somehow comes mostly from the first wheels to encounter the material.

[–] [email protected] 4 points 1 year ago

As with all equations in civil engineering, it’s not really derived from physics so much as it’s the curve that best fits the data.

It’s kind of interesting in that way, because it’s an implicit declaration that when shit gets really heavy (pun intended), we trust empirical observations more than we trust our own theories of how things work.

I think it’s a great example of coming back to the roots of science in measurement, as a practical humility we must take seriously because everything civil engineers do is high stakes.

[–] [email protected] 2 points 1 year ago

Wow, it makes sense but definitely not good at all