this post was submitted on 18 Aug 2023
90 points (97.9% liked)
Linux
48314 readers
397 users here now
From Wikipedia, the free encyclopedia
Linux is a family of open source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991 by Linus Torvalds. Linux is typically packaged in a Linux distribution (or distro for short).
Distributions include the Linux kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name GNU/Linux to emphasize the importance of GNU software, causing some controversy.
Rules
- Posts must be relevant to operating systems running the Linux kernel. GNU/Linux or otherwise.
- No misinformation
- No NSFW content
- No hate speech, bigotry, etc
Related Communities
Community icon by Alpár-Etele Méder, licensed under CC BY 3.0
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Performance? Not really no. I believe C is slightly faster with Rust and C++ competing for second place. The benefit is safer code as Rust is built with performance and safety in mind. It highlights what potential errors can be found where making human error way less common. Instead of potential null errors types are wrapped in an option enumerator which ensures you know there can be a lack of a value. Expections are also enumerators done similarly with a result object so you know which functions may fail. Instead of using memory and potentially forgetting to free it we have the ownership system.
How is C faster than C++? Unless you use virtual functions, it's as performant as C. And you definitely wouldn't use virtual functions in a kernel.
[This comment has been deleted by an automated system]
C++ is only as fast as C if you use only the parts of C++ that are identical to C. In other words, C is faster than C++
You can use compile time polymorphism in C++ without any runtime performance cost.
Compile time has got to be part of the convo esp when it comes to the kernel. The Linux kernel is one of the few bits where end-users are actively encouraged to compile from source. It is a feature!
Adding C++ compilitis is pain for what gain, from a kernel pov.
I am not a big fan of c++ overall however that is because other languages have emerged that are sweeter than C that gate some of the people issues with C++.
Anyone who has ever had a thing that was like a thing but not exactly the thing, in C, knows C ain’t great at that.
Unfortunately, that's not true
The description says:
This is not about compile-time polymorphism.
Here is an alternative Piped link(s): https://piped.video/watch?v=aq365yzrTVE
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I'm open-source, check me out at GitHub.
Aside from that I think C is more performant than C++ (indeed when you use the bells and whistles that C++ offers), you are comparing the libraries with each other.
The fact that the implementation of one random
std::Sort
is faster than the implementation ofqsort()
is comparing libraries, not the languages. You are comparing the algorithm of the Rust Sort with quicksort (which is obviously theqsort
you are referring to.I am certain there are sort implementations in C which outperform Rust.
Having said that, I immensely enjoy Rust because it forces me to think about the error handling and it does not give me the quirks of C/C++ (index out of bounds, memory corruption).
I thought we were discussing speed, not ease of use?
...so now we are discussing not speed again but ease of use.
Not everything with an R in it is faster than C. Read up about it. Everyone says so.
I'm out.
Since C++ has Turing complete compiling, I guess technically it can go infinite compilation time