this post was submitted on 02 Aug 2023
359 points (98.1% liked)
Technology
59223 readers
3096 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Any recommendations for a dedicated Wi-Fi 6+ AP that supports open firmware?
The short answer is no, because it’s a pain in the ass and offers little tangible benefit. But I can speculate.
If I was going down this path I would look for an x86 box with a wifi card that is supported by OPNsense or PFsense(that’s usually going to be dependant on available *BSD available drivers). I don’t how well they would function but I would expect quirks. You could also check the compatibility lists of the open router distributions to find something that’s well supported. You can check the forums for posts from people with similar goals and check their mileage.
You might even be able to achieve this with an ESP32.
But what are you hoping to achieve? Do you mean open radio firmware or do you mean open drivers? Or an open OS talking to a closed radio? What’s the benefit?
Radios in any device are discrete components running their own show.
Open drivers should be possible. However I have a feeling that open firmware for wifi access points radio hardware is going to be extremely hard to find. The regulatory agencies really don’t want the larger public to have complete control because of the possibility of causing interference and breaking the rules(for good reason - imagine if your neighbour had bad signal so he ignorantly cranks up the power output, not realising that he can’t do the same with his client devices, rendering his change useless).
I seem to remember a change in FCC rules some time back that seemed to disallow manufacturers obtaining certification for devices that permitted end users to modify the firmware, much to the concern of open router users at the time. The rule was aimed at radio firmware but the concern was that the distinction would be lost and the rule applied to the entire router by overzealous manufacturers who hate third party firmware at best.
A fully open radio is basically an SDR. Can you move packets over an SDR? Hell yes, but now you’re in esoteric HAM radio territory. It’s going to be a hell of a fun project and you’re going to learn a lot, but in so far as a practical wifi ap, your results will be limited.
I use FOSS wherever it’s practical but if you want working wifi just stick to the well tested brand names. For what it’s worth you probably won’t gain any security by going open, if there’s any weakness it’ll probably be baked in at the protocol level which open devices would need to follow anyway. At least a discrete AP can be isolated and has no reason to be given internet access.
We get it, you're the smartest man in the room. None of that was helpful for that poor soul who asked you for a recommendation on how to step away from OTS routers.
He asked for a recommendation which I can’t provide because I haven’t gone down the route he wants to know about, hence the first line and my explanation of why I chose not to do that.
I then speculated how I would do it if I were in his position. Then I broke down his question to help him examine what he really wanted: a completely free(as in open source) appliance, a free operating system and or free drivers.
Then finally I explained why you’re unlikely to get a truly free radio. I’m sorry if you or others found this unhelpful, I was just trying to condense quite a lot of information into a short post.
I did just see this posted: https://lemmy.ninja/post/224052
Opnsense and PFsense run on top of BSD underpinnings, so as long as the base OS sports the hardware you should be ok there, but:
I still don't really recommend throwing it all on one device. At the minimum, it's unlikely that a white-box PC with a wifi card is going to be as good for signal etc as a multi-antenna wireless device in hardware designed for such.
DD-WRT and OpenWRT can both do VLAN's and per-interface routing, so what I'd recommend instead is having AP's that run that software connected to port(s) or a VLAN intended for your wireless network, then having that run through your firewall (running PFsense, opnsense or whatever). You can even bind a specific SSID to a VLAN and separate your internal vs guest networks so they can't talk to each other (or at least, not without rules on the firewall host). That also allows you to run a bit of cable and space out multiple AP's in such a way that it provides better coverage, while still managing rules/routing/DHCP/etc so the central firewall.
I agree entirely. Look at these lovely radiation patterns:
https://help.ui.com/hc/en-us/articles/115005212927-UniFi-Network-AP-Antenna-Radiation-Patterns
I strongly suspect that those antennas are highly optimised and they lend themselves to being mounted in optimal locations. A couple of rubber duck antennas will work in the same room, but keeping that stuff up and away from all the other gear will pay dividends on the fringes of your wifi coverage.
I think Asus routers are about as close as you can get because the stock Asus firmware itself is based on an opensource firmware, which means 3rd party projects such as asuswrt-merlin has an easier time to develop their 3rd party firmware because the stock firmware's source code is available. They are more expensive than other routers though, which might a be a tough pill to swallow especially when vendors such as TP-Link sells their router for dime a dozen.