this post was submitted on 01 Aug 2023
335 points (97.2% liked)
Technology
60908 readers
4525 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
A conductor with no resistance is a big deal for many electrical applications. Electrical resistance is often a big part of design. Removing that aspect changes things significantly. Electrical power losses and the size of conductors can be greatly reduced.
I've read lots of unsubstantiated claims about superconductors. A solution has to be producible in quantity at a reasonable cost. Otherwise it's not going to be a breakthrough. I mean we currently have expensive and bulky superconductor solutions, but they're limited to applications where it's reasonable such as MRI machines and particle accelerators.
An inexpensive room temperature superconductor would make the most difference in tech sectors such as power transmission, electromechanical, and power electronics. These are areas where power loss due to circuit resistance is a big part of design. The impact would be minimal for computing and logic. There may be areas where power loss can be reduced, but logic relies on semi-conductors which must have resistance to function, it's in the name. The term "semi" implies resistance.
Would this potential superconductor work in devices like phones and laptops? Would it lead to more efficient operation?
If inexpensive it could be used in power components for consumer electronics like phones and laptops, but wouldn't make a huge difference since most of the power consumption occurs in chips and displays where superconductors wouldn't apply. Though it could lead to some reduction in size and better efficiency. Battery operated devices are considered low power. High power applications are where superconductors offer the most benefit.