Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
I mean arguably all of physics is based on fields. And fields determine the trajectory of particles, which is more colloquially what we call a "force" acting upon those particles.
So in the most literal sense, practically everything we can describe in the universe is a 'force field'. Not a satisfying answer, I know.
But you probably mean in the sci-fi sense of a thin geometrically constrained field that strongly affects particles within its limited boundaries but not those outside of it. That I'm less sure of. There are certainly the quantum mechanics 101 hypothetical problems where you assume a particle in a box with infinite energy barrier at the edges. But reality doesn't play nice with infinity so whether such a thing can exist is much more murky. You can certainly have high (but not infinite!) energy there. But then you run into the whole issue of quantum tunneling which means a certain fraction still goes through. [AFAIK there's no avoiding that.]
I'm pretty sure a fraction still goes through Stat Trek shields too. If not, then why do sparks shoot out of the terminals and things catch fire when shields are still holding?
I always assumed that was because the shield was failing and so to maintain it they have to divert excess power to it, which fries their systems. Or, another interpretation is that impacting the shields causes a power feedback which drives excess power to it unintentionally, and again leads it to frying/sparking.