Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
::: spoiler So the energy required to exit the gravity wells of planets is the main issue. I'm going with the assumption that infinite energy expansion is a fallacy. This is a post fusion era, but the expenditure of unrecoverable resources are a major faux pas. Culturally, they are free to utilize anything available, but expending the collectively held resources of a star system for anything short of an action in the best long term interests of said collective is unthinkable. This is a distant lesson from the stone age of silicon before Wild Earth and the migration to Cislune.
In my writing I've come up with the basic backstory of Sol, but my main focus is on a randomly picked colony around Alsafi.
It is helpful to imagine how the generation ships were equipped with the seeds needed to start a colony, like what kinds of ultra rare resources would be taken with them, and what would be a top priority upon arrival. One of three rep drones would likely slow around the outer stellar halo field to start operations and infrastructure required for resources beyond the elemental snow lines. The main question being resource density and fusion based propulsion.
Fusion is limited by enormous scale and the heat makes it a major challenge. The ultra exotic engineering materials required are considered atrocious because of the enormous amount of waste, heat, and how long even the recoverable byproducts take to incorporate into a sustainable elemental cycle. There is very little time pressure but there is extreme sustainability and conservative long term stability pressure.
I'm constraining the generation ships to 7 parsecs in travel distance due to pragmatic engineering constraints (baseless handwaving magic really, I'm just targeting the number of type G stars available, mostly because I find the lack of present lack of attention on the only type of system known to host life atrocious).
Many gen ships and colonies fail. The first geny ship to Alsafi is lost in transit. The second has a series of unfortunate events that delay the first cylinder construction. After ten generations the entire human population is sterile without gravity.
Indeed, time is not a major factor in most situations. Lifespans are on the order of a half millennium. I want to convey that our size and slice of time is okay to appreciate against a larger canvas and doing so is the only path to a greater future. The present is a primitive stone age and nowhere remotely close to some techno end game. In the present we have far too much hubris and a delusional grandeur that lacks a cultural perspective on our place in the future timeline. We are only a link in a chain.
The one constant in civilizations over time is increasing complexity and the tools needed to wield it. The interesting story is what becomes possible when that complexity is accessible. There is no magic in that story, techno or otherwise. The tools of that age are all around us right now, or at least the building blocks to make them. We simply lack an understanding. Harnessing the complete potential of biology and the way nature creates balance and stability is something we have only scratched the surface of observing, let alone harnessing.
The minutiae become interesting to me, like the logistics, complex social hierarchy after the primitive accruing of the fundamental means of survival, and the lives of average unremarkable persons with their perspective self awareness and nuances brought to light in a critique of the present. These need to be grounded in the conservative reality of an existence where the main differences between then and now are the expansion of accessible complexity and a massive growth in the available wealth.
I think we are likely already able to access and are using many niche materials and processes that the future will abandon as untenable. I see this as both an immense expansion of technology and a techno minimalism. Life is appreciated for exactly what it is. There is no guarantee.
Like, valuing the lives of a few astronauts going to the Moon at billions of dollars in redundancy is ludicrous. You will find many volunteers willing to take far greater risks for far less reward on Earth. These are a resource too and naïveté of this resource is stupidity. We are not a race of demigods like is common in present cultural religious thought. Life is precious, and no one will force another into increased risk, but no one has to force another when the full spectrum of people are considered. A suitable person or group will always volunteer to take on the risk.
So like, when I'm curious about nitrogen, I'm interested in how it might be sourced and moved around in the most stable and efficient way possible. There are likely large networks of transfer orbiting infrastructures and pod like bubble ecosystems made to process and transport resources. Biologically sequestering resources and the solid state of matter are the primary forms of storage. Like the mountains inside the habitat are the primary source of oxygen storage.