this post was submitted on 19 Nov 2024
257 points (99.2% liked)
xkcd
8887 readers
95 users here now
A community for a webcomic of romance, sarcasm, math, and language.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This makes it a one-cylinder motor, right?
If so, it’s a one-stroke motor. Kinda, sorta, maybe :P
How much squidpower we talkin' here
Only 8, one for each arm.
Nah. They need to push the gunpowder in from the "boom" side. We also count the "outs". Anchor into the cannon is a separate step and cannot just be hung on the outside.
Boom, gun powder in, stick out, anchor in, stick out.
5 strokes unless we count a "suck" for cooling the barrel.
Thoughts?
Now that I think of it (far more than a silly topic actually deserves), I’m convinced it’s a 2-stroke mechanism. Loading and firing are separate stages of the normal operation cycle. Think of that like the two stages of a power cycle of a 2-stroke engine.
Piston moving up is like cannonball and gunpowder going into the barrel in the loading stage. Gasoline igniting and moving the piston down is like gunpowder burning and propelling the ball out of the barrel.
Oh, that is good!
In a typical 4-stroke engine, there is a process for resetting the engine between power strokes. The energy for the other three strokes (exhaust, intake, compression) comes from inertia in some sort of flywheel.
The "power stroke" in this system is not the gunpowder. It is the winching in of the cable.
In this system, the cannon is analogous to the flywheel: It merely resets the system between power strokes.
More specifically: