this post was submitted on 26 Aug 2024
168 points (93.8% liked)
Technology
61065 readers
4190 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I heard it said many years ago that if DC won the battle, we'd have power stations every 10 miles and power lines as thick as your wrist.
Converting local power is fairly easy, with AC inverters added for universal compatibility.
But, take note of how many DC voltages you use in your house. Devices in mine range from 3v to 25v and some weird one like 19v for a laptop. You'd still have adapters all over the place.
This is probably true, but every single one could lose the rectifier part, and instead of having to convert from pulsating DC (the output of mains rectification), you get clean DC from the wall instead, which should allow for using smaller capacitors in many places.
Okay, these are short term problems. "power lines as thick as your wrist" depend on the voltage. If voltage conversion works well enough, that issue disappears.
Yeah, that's why we need some kind of standard for these things.
Ha! Yes! Even today USB 5 volts is pretty sweet for low power stuff. USB PD re-complicates things, but it's not user dependent so that's a plus.
And you need a loooot of copper to prevent voltage drop especially when a grid of 100 houses 1/2 mile long draw 20-80 amps each. The math starts adding up real quick.
I mean, you need a lot of voltage to make voltage drop irrelevant. Like, 120 or 240 volts. If distribution is voltage is the same dc/ac, we could use the same wiring (but different breakers, and everything else).
So the wiring argument doesn't really hold up - the question is more about efficient converters to reduce voltage once it's at the house.
I.e., for typical American distribution, it's 240 in the neighborhood and drops to 120 in the house. If the dc does the same, the same amount of power can be drawn along existing wires.
Yea have fun transmitting a decent amount of power with 240v over a meaningfull distance. Also most generators produce ac anyways so why would you recitify it at the generator instead of your device after a transformer? You still need all kinds of different voltages everywhere in your electronics and this means you still need to regulate it.
I am not shure how the american wirering worls out but to get from 240 to 120 you still need a transformer... or is it 240v between the different phases and then 120 from phase to neutral?
240 in the neighborhood - i.e., that's enough to distribute from the pole to a few houses. Of course you have higher voltages to go longer distances. This is equally true for AC vs DC. Thus, the idea that it takes a looot of copper for DC is erroneous.
In fact, where conductor size is relevant is that you can use smaller conductors for DC, because of the skin effect.
Wiring: Split phase, that is also usable as 240 for large appliances. So, the latter.
Skin effect with 50hz yea, no not much.
Ok so every time you change the voltage level you still need a transformer and a inverter to create ac, so no it doesnt make any sense.