this post was submitted on 28 May 2024
216 points (89.4% liked)
Science Memes
11189 readers
3018 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The gravitational constant G, no, the mutual gravitational force between the earth and the ball approximated as g, yes.
Edit: Since this is a little pedantic, G is used to calculate g.
But how would that make the bowling ball fall faster? F = G × m₁ × m₂ / r² and F = m₁ × a ⇒ a = F / m = G × m₂ / r², where m₁ is the mass of the ball and m₂ the mass of the planet. So the gravitational acceleration of a bowling ball is independent of its mass (assuming the planet has way more mass than a bowling ball).
I guess the bowling ball attracts the Earth towards it, shortening the distance so it hits the ground faster