I do lol
apolo399
There were two though. The other one stayed protecting the sheep while this guy went on a hunt for 2 days straight.
So we can see the where this weirdness comes from when we look at the energy for a photon, E=hf=hc/λ
When we integrate we sort of slice the function in fixed intervals, what i called above df and dλ. So let's see what is the difference in energy when our frequency interval is, for example, 1000 Hz, and use a concrete example with 100 Hz and 1100 Hz. Then ΔE = E(1100 Hz) - E(100 Hz) = h·(1100 Hz - 100 Hz) = h·(1000 Hz) = 6.626×10^-31 joules. You can check that this difference in energy will be the same if we had used any other frequencies as long as they had been 1000 Hz apart.
Now let's do the same with a fixed interval in wavelength. We'll use 1000 nm and start at 100 nm. Then ΔE = E(100 nm) - E(1100 nm) = hc·(1/(100 nm)-1/(1100 nm)) = 1.806×10^-18 joules. This energy corresponds to a frequency interval of 2.725×10^15 hertz. Now let's do one more step. ΔE = E(1100 nm) - E(2100 nm) = 8.599×10^-20 joules, which corresponds to a frequency interval of 1.298×10^14 hertz.
So the energy emitted in a fixed frequency interval is not comparable to the energy emitted in a wavelength interval. To account for this the very function that is being integrated has to be different, as in the end what's relevant is the result of the integral: the total energy radiated. This result has to be the same independent of the variable we use to integrate. That's why the peaks in frequency are different to those in wavelength: the peaks depend on the function, and the functions aren't the same.
https://www.scielo.br/j/rbef/a/mYqvM4Qc3KLmmfFRqMbCzhB/?lang=en
This is something that bothered me when I was in undergrad but now I've come to understand. The article above goes through the math of computing different Wien peaks for different representations of the spectral energy density.
In short, the Wien peaks are different because what the density function measures in a given parametrization is different. In frequency space the function measures the energy radiated in a small interval [f, f + df] while in wavelength space it measure the energy radiated in an interval [λ, λ + dλ]. The function in these spaces will be different to account for the different amounts of energy radiated in these intervals, and as such the peaks are different too.
(I typed this on a phone kinda rushed so I could clarify it if you'd like)
I don't know if you want a serious answer but here you go: it has to be something done in massive numbers to shift the power balance towards the people and away from the billionaires, else it's just an individual killing a poor father of three or whatever sob story they'd like to tell that happened to be a CEO
You can use "no binaria", which kind of implies the usage of "persona".
This isn't entirely true either. The adjective "binario" has to agree with the gender of what's being talked about, either the grammatical gender of the noun or the natural gender of the person. A salient example could be the noun "piloto". Just as adjectives inflect for gender so do pronouns, so you can say "el piloto" or "la piloto" depending on the natural gender of the person, and inflect adjectives accordingly. Grammatical gender and natural gender are both distict concepts that impact gender inflection in spanish.
It does when the edge case is the general case being discussed.
I find showing my work and proving things super fun! It's a puzzle for me, to show how things work. I'm doing a master's degree in physics and I excel at the most rigorous classes and suck at the more heuristic ones.
The research you are basing your third paragraph on was actually never published and its claims have remained controversial.
I recommend you check this great video on both grammatical gender and Boroditsky's article: https://www.youtube.com/watch?v=1q1qp4ioknI
Idiotic joke
Maybe they were thinking "secular" and "non-religious" when typing and ended up with "non-secular"