this post was submitted on 11 Dec 2024
13 points (93.3% liked)

Advent Of Code

920 readers
1 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 11: Plutonian Pebbles

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

top 30 comments
sorted by: hot top controversial new old
[–] [email protected] 5 points 1 month ago* (last edited 1 month ago) (1 children)

Zee

Zee is my Dutch dialect of C. Since Dutch has compound words, so does Zee: "const char **" becomes vasteletterverwijzingsverwijzing, not vaste letter verwijzing verwijzing, which would be incorrect. A pointer to a long long unsigned int is, obviously, a zeergrootnatuurlijkgetalverwijzing.

Code

#ingesloten "zee.kop"
#ingesloten "algemeen.kop"

besloten getal
splits(
    zeer groot natuurlijk getal x,
    zeergrootnatuurlijkgetalverwijzing a,
    zeergrootnatuurlijkgetalverwijzing b)
{
	zeer groot natuurlijk getal m;
	getal n, g;

	mits (!x) lever 0;
	voor (n=0, m=1; m<=x;  n++, m*=10) ; mits (n%2) lever 0;
	voor (g=0, m=1; g<n/2; g++, m*=10) ;
	volg a = x/m;
	volg b = x%m; lever 1;
}

#definieer GEHL (1024*1024)
besloten zeer groot natuurlijk getal geh[GEHL][76];

besloten zeer groot natuurlijk getal
afdalen(zeer groot natuurlijk getal w, getal n)
{
	zeer groot natuurlijk getal a,b;

	mits (n<1 ) lever 1;
	mits (w==0) lever afdalen(1, n-1);
	mits (w<10) lever afdalen(w*2024, n-1);
	mits (w<GEHL && geh[w][n])        lever geh[w][n];
	mits (!splits(w, naar a, naar b)) lever afdalen(w*2024, n-1);

	lever w<GEHL ? geh[w][n] =
	    afdalen(a, n-1) + afdalen(b, n-1) :
	    afdalen(a, n-1) + afdalen(b, n-1);
}

getal
aanvang(getal parametersom, vasteletterverwijzingsverwijzing parameters)
{
	zeer groot natuurlijk getal d1=0,d2=0, waarde;

	mits (parametersom > 1)
		VERWERP(heropen(parameters[1], "r", standaardinvoer));

	zolang (invorm(" %llu", &waarde) == 1) {
		d1 += afdalen(waarde, 25);
		d2 += afdalen(waarde, 75);
	}

	uitvorm("11: %llu %llu\n", d1, d2);
	lever 0;
}

And of course we don't have a Makefile but a Maakbestand:

alles: €{DAGEN}

schoon:
	€{WIS} -f €{DAGEN} *.o

...

.TWIJFELACHTIG:	alles schoon oplossingen
.UITGANGEN:	.zee .o

.zee.o:
	€{ZEE} €{VOORWERKVLAG} €{ZEEVLAG} -o €@ -c €<
[–] [email protected] 3 points 1 month ago (1 children)

Yet more proof that the dutch are mad :D

Is it your own esolang, or is it commonly used by dutch speakers?

[–] [email protected] 4 points 1 month ago* (last edited 1 month ago)

No it's just me messing about with macros (but it does work!)

I do want to explore the type naming rules, see if I can write a parser for it. The C rules are funky by themselves but this is another level. "vaste letterverwijzing" is "char * const" but "vasteletterverwijzing" (without the space) is "const char *". Then there's grammatical gender: "vast getal" (const int) but "vaste letter" (const char)

[–] mykl 4 points 1 month ago* (last edited 1 month ago)

Uiua

I thought this was going to be trivial to implement in Uiua, but I managed to blow the stack, meaning I had to set an environment variable in order to get it to run. That doesn't work in Uiua Pad, so for any counts larger than 15 you need to run it locally. Built-in memoisation though so that's nice.

# NB Needs env var UIUA_RECURSION_LIMIT=300
Next  ← ⍣([1] Β°0|[Γ—2024] Β°1β—Ώ2⧻°⋕.|βœΒ°β‹•(β†―2_∞))
Count ← |2 memo(⨬(1|/+≑CountΒ€-1βŠ™Next)β‰ 0.) # rounds, stone
≑(&p/+≑CountΒ€: βŠœβ‹•βŠΈβ‰ @\s "125 17")[25 75]
[–] [email protected] 3 points 1 month ago

And now we get into the days where caching really is king. My first attempt didn't go so well, I tried to handle the full list result as one cache step, instead of individually caching the result of calculating each stone per step.

I think my original attempt is still calculating at home, but I finished up this much better version on the trip to work.
All hail public transport.

C#

List<long> stones = new List<long>();
public void Input(IEnumerable<string> lines)
{
  stones = string.Concat(lines).Split(' ').Select(v => long.Parse(v)).ToList();
}

public void Part1()
{
  var expanded = TryExpand(stones, 25);

  Console.WriteLine($"Stones: {expanded}");
}
public void Part2()
{
  var expanded = TryExpand(stones, 75);

  Console.WriteLine($"Stones: {expanded}");
}

public long TryExpand(IEnumerable<long> stones, int steps)
{
  if (steps == 0)
    return stones.Count();
  return stones.Select(s => TryExpand(s, steps)).Sum();
}
Dictionary<(long, int), long> cache = new Dictionary<(long, int), long>();
public long TryExpand(long stone, int steps)
{
  var key = (stone, steps);
  if (cache.ContainsKey(key))
    return cache[key];

  var result = TryExpand(Blink(stone), steps - 1);
  cache[key] = result;
  return result;
}

public IEnumerable<long> Blink(long stone)
{
  if (stone == 0)
  {
    yield return 1;
    yield break;
  }
  var str = stone.ToString();
  if (str.Length % 2 == 0)
  {
    yield return long.Parse(str[..(str.Length / 2)]);
    yield return long.Parse(str[(str.Length / 2)..]);
    yield break;
  }
  yield return stone * 2024;
}

[–] Acters 3 points 1 month ago* (last edited 1 month ago) (1 children)

Python

Part 1: ~2 milliseconds, Part 2: ~32 milliseconds, Total Time: ~32 milliseconds
You end up doing part 1 at the same time as part 2 but because of how Advent of Code works, you need to rerun the code after part 1 is solved. so Part 2 is technically total time.

Fast Code

from time import perf_counter_ns

transform_cache = {'0': [ '1']}

def transform(current_stone):
    if len(current_stone) % 2 == 0:
        mid = len(current_stone) // 2
        res = [current_stone[:mid], current_stone[mid:].lstrip('0').rjust(1,'0')]
    else:
        res = [str(int(current_stone) * 2024)]
    transform_cache[current_stone] = res
    return res

def main(initial_stones):
    stones_count = {}
    for stone in initial_stones.split():
        stones_count[stone] = stones_count.get(stone, 0) + 1
    part1 = 0
    for i in range(75):
        new_stones_count = {}
        for stone, count in stones_count.items():
            for r in (transform_cache.get(stone) if stone in transform_cache else transform(stone)):
                new_stones_count[r] = new_stones_count.get(r, 0) + count
        stones_count = new_stones_count
        if i == 24:
            part1 = sum(stones_count.values())
    return part1,sum(stones_count.values())

if __name__ == "__main__":
    with open('input', 'r') as f:
        input_data = f.read().replace('\r', '').replace('\n', '')
    start_time, part_one, part_two = perf_counter_ns(),*main(input_data)
    stop_time = perf_counter_ns() - start_time
    time_len = min(9, ((len(str(stop_time))-1)//3)*3)
    time_conversion = {9: 'seconds', 6: 'milliseconds', 3: 'microseconds', 0: 'nanoseconds'}
    print(f"Part 1: {part_one}\nPart 2: {part_two}\nProcessing Time: {stop_time / (10**time_len)} {time_conversion[time_len]}")

[–] [email protected] 2 points 1 month ago (1 children)

Stepping through this code is what made it click for me, thanks. I was really mentally locked in on "memoizing" of the transform function, instead of realizing that the transform function only needs to be applied once per stone value.

Yours is still a lot faster than my rust version, so i'll have to work out what is happening there.

[–] Acters 2 points 1 month ago* (last edited 1 month ago) (1 children)

Learning to profile code gives you a chance to learn what is inefficient code! I definitely like to spend sometime looking at it but at the end of the day. I really need to learn more languages. for now, I am sticking with trusty python. image bellow is in microseconds.

screenshots

if the python process was kept alive, then we only are saving 25 milliseconds from ~250 to ~235! However, in real world testing, it seems that the profiler is not really a proper enough test! likely because the profiler is adding some overhead to each line of code.

notice here, if I add this line of code:

transform_cache = {}
BASE_DIR = dirname(realpath(__file__))
if isfile(join(BASE_DIR, r'transform_cache')):
    with open('transform_cache', 'r') as f:
        transform_cache = literal_eval(f.read().replace('\r','').replace('\n',''))
transform_cache = {} # this makes the code faster???

Notice I load from file a transform_cache from a previous run. However because of the "if stone in transform_cache" check, the loaded transform_cache is for some reason slower than allowing it to be filled up again. however, loading it and clearing it, is faster because the cpu/ram/OS is probably doing their own caching, too. if we remove the "if stone in transform_cache" check and keep the transform_cache fully loaded, then it is faster by ~1 millisecond, down to 29 milliseconds! these are the niche problems with caching things and squeezing all the performance out of code.


[–] [email protected] 1 points 1 month ago (1 children)

Yeah, I have been using these slow challenges to improve my profiling ability. It is a bit of a dark art though, especially with compiled languages.

My slowest part seems to be the hashmap, but there isnt much I can do about that I think.

Also, if I do a release run I can get 10ms, but that feels like cheating :D

[–] Acters 2 points 1 month ago* (last edited 1 month ago) (1 children)

Hey that is what release mode is for! optimizing by unrolling and other tricks is needed, but in your case, I think I remember someone mention their rust release mode is closer to 2 ms.

I did try something like PyPy3 but it seems to be slower by ~3 milliseconds! So I don't know where I could improve my code any further without unrolling the range(75) loop. though would only make it closer to ~29 ms on avg.

Edit: apparently they updated their code to be closer to 250 micro seconds. that is blazing fast [ link ]

[–] [email protected] 1 points 1 month ago (1 children)

Using release to beat python code is just a very hollow victory :D

It does somewhat depend on how we measure as well, you are benching the algorithm itself, and I'm doing the entire execution time

[–] Acters 1 points 1 month ago* (last edited 1 month ago) (1 children)

you are right, I dont think loading the file from disk should be part of it because OS process priority/queue, disk and cache and more headaches on figuring out what is slow. If you want to compare the entire execution including python startup overhead and reading from file and anything extra. it is closer 50 to 60 ms on linux and 80-90 ms on windows. (both hosts, not virtual machines)

My reasoning is that loading the input will eventually either pull from the website or disk. that is not part of the challenge. you could simply just hard code it.

So maybe you should look into adding code to your debug mode or both modes for measuring solving it instead of the entire process loading.

however, someone claims their rust code can do 250 microseconds, so I doubt you have much excuse aside from having "inefficient" code.(you are still fast, just not at the limit of your Language's performance) only measuring my python algorithm, it is only able to finish in 32000 microseconds.

https://github.com/maneatingape/advent-of-code-rust/blob/main/src/year2024/day11.rs

however, now that I am looking at their main.rs file, they do calculate time for completion after process startup and only the algorithm.

[–] [email protected] 1 points 1 month ago

Yeah, disk loading definitely shouldn't count if I was timing properly, I'm just lazy and dont want to do proper timing. :D

Most of my slowdown is in the hashmap, looks like that answer deconstructs the hashmap and builds it from a fastmap and a vec. Not sure I want to go down that road, at this stage.

Thanks again for your code and help :)

[–] LeixB 3 points 1 month ago

Haskell

import Data.Monoid
import Control.Arrow

data Tree v = Tree (Tree v) v (Tree v)

-- https://stackoverflow.com/questions/3208258
memo1 f = index nats
  where
    nats = go 0 1
    go i s = Tree (go (i + s) s') (f i) (go (i + s') s')
      where
        s' = 2 * s
    index (Tree l v r) i
        | i < 0 = f i
        | i == 0 = v
        | otherwise = case (i - 1) `divMod` 2 of
            (i', 0) -> index l i'
            (i', 1) -> index r i'

memo2 f = memo1 (memo1 . f)

blink = memo2 blink'
  where
    blink' c n
        | c == 0 = 1
        | n == 0 = blink c' 1
        | even digits = blink c' l <> blink c' r
        | otherwise = blink c' $ n * 2024
      where
        digits = succ . floor . logBase 10 . fromIntegral $ n
        (l, r) = n `divMod` (10 ^ (digits `div` 2))
        c' = pred c

doBlinks n = getSum . mconcat . fmap (blink n)
part1 = doBlinks 25
part2 = doBlinks 75

main = getContents >>= print . (part1 &&& part2) . fmap read . words
[–] [email protected] 3 points 1 month ago

Rust

Part 2 is solved with recursion and a cache, which is indexed by stone numbers and remaining rounds and maps to the previously calculated expansion size. In my case, the cache only grew to 139320 entries, which is quite reasonable given the size of the result.

Solution

use std::collections::HashMap;

fn parse(input: String) -> Vec<u64> {
    input
        .split_whitespace()
        .map(|w| w.parse().unwrap())
        .collect()
}

fn part1(input: String) {
    let mut stones = parse(input);
    for _ in 0..25 {
        let mut new_stones = Vec::with_capacity(stones.len());
        for s in &stones {
            match s {
                0 => new_stones.push(1),
                n => {
                    let digits = s.ilog10() + 1;
                    if digits % 2 == 0 {
                        let cutoff = 10u64.pow(digits / 2);
                        new_stones.push(n / cutoff);
                        new_stones.push(n % cutoff);
                    } else {
                        new_stones.push(n * 2024)
                    }
                }
            }
        }
        stones = new_stones;
    }
    println!("{}", stones.len());
}

fn expansion(s: u64, rounds: u32, cache: &mut HashMap<(u64, u32), u64>) -> u64 {
    // Recursion anchor
    if rounds == 0 {
        return 1;
    }
    // Calculation is already cached
    if let Some(res) = cache.get(&(s, rounds)) {
        return *res;
    }

    // Recurse
    let res = match s {
        0 => expansion(1, rounds - 1, cache),
        n => {
            let digits = s.ilog10() + 1;
            if digits % 2 == 0 {
                let cutoff = 10u64.pow(digits / 2);
                expansion(n / cutoff, rounds - 1, cache) +
                expansion(n % cutoff, rounds - 1, cache)
            } else {
                expansion(n * 2024, rounds - 1, cache)
            }
        }
    };
    // Save in cache
    cache.insert((s, rounds), res);
    res
}

fn part2(input: String) {
    let stones = parse(input);
    let mut cache = HashMap::new();
    let sum: u64 = stones.iter().map(|s| expansion(*s, 75, &mut cache)).sum();
    println!("{sum}");
}

util::aoc_main!();

Also on github

[–] [email protected] 2 points 1 month ago* (last edited 1 month ago)

Nim

Runtime: 30-40 ms
I'm not very experienced with recursion and memoization, so this took me quite a while.

Edit: slightly better version

template splitNum(numStr: string): seq[int] =
  @[parseInt(numStr[0..<numStr.len div 2]), parseInt(numStr[numStr.len div 2..^1])]

template applyRule(stone: int): seq[int] =
  if stone == 0: @[1]
  else:
    let numStr = $stone
    if numStr.len mod 2 == 0: splitNum(numStr)
    else: @[stone * 2024]

proc memRule(st: int): seq[int] =
  var memo {.global.}: Table[int, seq[int]]
  if st in memo: return memo[st]
  result = st.applyRule
  memo[st] = result

proc countAfter(stone: int, targetBlinks: int): int =
  var memo {.global.}: Table[(int, int), int]
  if (stone,targetBlinks) in memo: return memo[(stone,targetBlinks)]

  if targetBlinks == 0: return 1
  for st in memRule(stone):
    result += st.countAfter(targetBlinks - 1)
  memo[(stone,targetBlinks)] = result

proc solve(input: string): AOCSolution[int, int] =
  for stone in input.split.map(parseInt):
    result.part1 += stone.countAfter(25)
    result.part2 += stone.countAfter(75)

Codeberg repo

[–] mykl 2 points 1 month ago* (last edited 1 month ago)

Dart

I really wish Dart had memoising built in. Maybe the new macro feature will allow this to happen, but in the meantime, here's my hand-rolled solution.

import 'package:collection/collection.dart';

var counter_ = <(int, int), int>{};
int counter(s, [r = 75]) => counter_.putIfAbsent((s, r), () => _counter(s, r));
int _counter(int stone, rounds) =>
    (rounds == 0) ? 1 : next(stone).map((e) => counter(e, rounds - 1)).sum;

List<int> next(int s) {
  var ss = s.toString(), sl = ss.length;
  if (s == 0) return [1];
  if (sl.isOdd) return [s * 2024];
  return [ss.substring(0, sl ~/ 2), ss.substring(sl ~/ 2)]
      .map(int.parse)
      .toList();
}

solve(List<String> lines) => lines.first.split(' ').map(int.parse).map(counter).sum;
[–] [email protected] 2 points 1 month ago (1 children)

Haskell

Yay, mutation! Went down the route of caching the expanded lists of stones at first. Oops.

import Data.IORef
import Data.Map.Strict (Map)
import Data.Map.Strict qualified as Map

blink :: Int -> [Int]
blink 0 = [1]
blink n
  | s <- show n,
    l <- length s,
    even l =
      let (a, b) = splitAt (l `div` 2) s in map read [a, b]
  | otherwise = [n * 2024]

countExpanded :: IORef (Map (Int, Int) Int) -> Int -> [Int] -> IO Int
countExpanded _ 0 = return . length
countExpanded cacheRef steps = fmap sum . mapM go
  where
    go n =
      let key = (n, steps)
          computed = do
            result <- countExpanded cacheRef (steps - 1) $ blink n
            modifyIORef' cacheRef (Map.insert key result)
            return result
       in readIORef cacheRef >>= maybe computed return . (Map.!? key)

main = do
  input <- map read . words <$> readFile "input11"
  cache <- newIORef Map.empty
  mapM_ (\steps -> countExpanded cache steps input >>= print) [25, 75]
[–] VegOwOtenks 2 points 1 month ago (1 children)

Does the IORef go upwards the recursion tree? If you modify the IORef at some depth of 15, does the calling function also receive the update, is there also a Non-IO-Ref?

[–] [email protected] 2 points 1 month ago* (last edited 1 month ago)

The IORef is like a mutable box you can stick things in, so readIORef returns whatever was last put in it (in this case using modifyIORef'). "last" makes sense here because operations are sequenced thanks to the IO monad, so yes: values get carried back up the tree to the caller. There's also STRef for the ST monad, or I could have used the State monad which (kind of) encapsulates a single ref.

[–] VegOwOtenks 2 points 1 month ago (1 children)

Haskell

Sometimes I want something mutable, this one takes 0.3s, profiling tells me 30% of my time is spent creating new objects. :/

import Control.Arrow

import Data.Map.Strict (Map)

import qualified Data.Map.Strict as Map
import qualified Data.Maybe as Maybe

type StoneCache = Map Int Int
type BlinkCache = Map Int StoneCache

parse :: String -> [Int]
parse = lines >>> head >>> words >>> map read

memoizedCountSplitStones :: BlinkCache -> Int -> Int -> (Int, BlinkCache)
memoizedCountSplitStones m 0 _ = (1, m)
memoizedCountSplitStones m i n 
        | Maybe.isJust maybeMemoized = (Maybe.fromJust maybeMemoized, m)
        | n == 0     = do
                let (r, rm) = memoizedCountSplitStones m (pred i) (succ n)
                let rm' = cacheWrite rm i n r
                (r, rm')
        | digitCount `mod` 2 == 0 = do
                let (r1, m1) = memoizedCountSplitStones m  (pred i) firstSplit
                let (r2, m2) = memoizedCountSplitStones m1 (pred i) secondSplit
                let m' = cacheWrite m2 i n (r1+r2)
                (r1 + r2, m')
        | otherwise = do
                let (r, m') = memoizedCountSplitStones m (pred i) (n * 2024)
                let m'' = cacheWrite m' i n r
                (r, m'')
        where
                secondSplit    = n `mod` (10 ^ (digitCount `div` 2))
                firstSplit     = (n - secondSplit) `div` (10 ^ (digitCount `div` 2))
                digitCount     = succ . floor . logBase 10 . fromIntegral $ n
                maybeMemoized  = cacheLookup m i n

foldMemoized :: Int -> (Int, BlinkCache) -> Int -> (Int, BlinkCache)
foldMemoized i (r, m) n = (r + r2, m')
        where
                (r2, m') = memoizedCountSplitStones m i n

cacheWrite :: BlinkCache -> Int -> Int -> Int -> BlinkCache
cacheWrite bc i n r = Map.adjust (Map.insert n r) i bc

cacheLookup :: BlinkCache -> Int -> Int -> Maybe Int
cacheLookup bc i n = do
        sc <- bc Map.!? i
        sc Map.!? n

emptyCache :: BlinkCache
emptyCache = Map.fromList [ (i, Map.empty) | i <- [1..75]]

part1 = foldl (foldMemoized 25) (0, emptyCache)
        >>> fst
part2 = foldl (foldMemoized 75) (0, emptyCache)
        >>> fst

main = getContents
        >>= print
        . (part1 &&& part2)
        . parse
[–] [email protected] 2 points 1 month ago (1 children)

Some nice monadic code patterns going on there, passing the cache around! (You might want to look into the State monad if you haven't come across it before)

[–] VegOwOtenks 2 points 1 month ago* (last edited 1 month ago) (1 children)

Thank you for the hint, I wouldn't have recognized it because I haven't yet looked into it, I might try it this afternoon if I find the time, I could probably put both the Cache and the current stone count into the monad state?

[–] [email protected] 2 points 1 month ago

Your code as it stands is basically State BlinkCache written out explicitly, which is I think a natural way to structure the solution. That is, the cache is the state, and the stone count is the (monadic) return value. Good luck!

[–] [email protected] 2 points 1 month ago (1 children)

C#

public class Day11 : Solver
{
  private long[] data;

  private class TreeNode(TreeNode? left, TreeNode? right, long value) {
    public TreeNode? Left = left;
    public TreeNode? Right = right;
    public long Value = value;
  }

  private Dictionary<(long, int), long> generation_length_cache = [];
  private Dictionary<long, TreeNode> subtree_pointers = [];

  public void Presolve(string input) {
    data = input.Trim().Split(" ").Select(long.Parse).ToArray();
    List<TreeNode> roots = data.Select(value => new TreeNode(null, null, value)).ToList();
    List<TreeNode> last_level = roots;
    subtree_pointers = roots.GroupBy(root => root.Value)
      .ToDictionary(grouping => grouping.Key, grouping => grouping.First());
    for (int i = 0; i < 75; i++) {
      List<TreeNode> next_level = [];
      foreach (var node in last_level) {
        long[] children = Transform(node.Value).ToArray();
        node.Left = new TreeNode(null, null, children[0]);
        if (subtree_pointers.TryAdd(node.Left.Value, node.Left)) {
          next_level.Add(node.Left);
        }
        if (children.Length <= 1) continue;
        node.Right = new TreeNode(null, null, children[1]);
        if (subtree_pointers.TryAdd(node.Right.Value, node.Right)) {
          next_level.Add(node.Right);
        }
      }
      last_level = next_level;
    }
  }

  public string SolveFirst() => data.Select(value => GetGenerationLength(value, 25)).Sum().ToString();
  public string SolveSecond() => data.Select(value => GetGenerationLength(value, 75)).Sum().ToString();

  private long GetGenerationLength(long value, int generation) {
    if (generation == 0) { return 1; }
    if (generation_length_cache.TryGetValue((value, generation), out var result)) return result;
    TreeNode cur = subtree_pointers[value];
    long sum = GetGenerationLength(cur.Left.Value, generation - 1);
    if (cur.Right is not null) {
      sum += GetGenerationLength(cur.Right.Value, generation - 1);
    }
    generation_length_cache[(value, generation)] = sum;
    return sum;
  }

  private IEnumerable<long> Transform(long arg) {
    if (arg == 0) return [1];
    if (arg.ToString() is { Length: var l } str && (l % 2) == 0) {
      return [int.Parse(str[..(l / 2)]), int.Parse(str[(l / 2)..])];
    }
    return [arg * 2024];
  }
}
[–] [email protected] 3 points 1 month ago (1 children)

I had a very similar take on this problem, but I was not caching the results of a blink for a single stone, like youre doing with subtree_pointers. I tried adding that to my solution, but it didn't make an appreciable difference. I think that caching the lengths is really the only thing that matters.

C#

    static object Solve(Input i, int numBlinks)
    {
        // This is a cache of the tuples of (stoneValue, blinks) to
        // the calculated count of their child stones.
        var lengthCache = new Dictionary<(long, int), long>();
        return i.InitialStones
            .Sum(stone => CalculateUltimateLength(stone, numBlinks, lengthCache));
    }

    static long CalculateUltimateLength(
        long stone,
        int numBlinks,
        IDictionary<(long, int), long> lengthCache)
    {
        if (numBlinks == 0) return 1;
        
        if (lengthCache.TryGetValue((stone, numBlinks), out var length)) return length;

        length = Blink(stone)
            .Sum(next => CalculateUltimateLength(next, numBlinks - 1, lengthCache));
        lengthCache[(stone, numBlinks)] = length;
        return length;
    }

    static long[] Blink(long stone)
    {
        if (stone == 0) return [1];

        var stoneText = stone.ToString();
        if (stoneText.Length % 2 == 0)
        {
            var halfLength = stoneText.Length / 2;
            return
            [
                long.Parse(stoneText.Substring(0, halfLength)),
                long.Parse(stoneText.Substring(halfLength)),
            ];
        }

        return [stone * 2024];
    }
[–] [email protected] 1 points 1 month ago

I think that caching the lengths is really the only thing that matters.

Yep, it is just a dynamic programming problem really.

[–] iAvicenna 2 points 1 month ago

Python

I initially cached the calculate_next function but honestly number of unique numbers don't grow that much (couple thousands) so I did not feel a difference when I removed the cache. Using a dict just blazes through the problem.

from pathlib import Path
from collections import defaultdict
cwd = Path(__file__).parent

def parse_input(file_path):
  with file_path.open("r") as fp:
    numbers = list(map(int, fp.read().splitlines()[0].split(' ')))

  return numbers

def calculate_next(val):

  if val == 0:
    return [1]
  if (l:=len(str(val)))%2==0:
    return [int(str(val)[:int(l/2)]), int(str(val)[int(l/2):])]
  else:
    return [2024*val]

def solve_problem(file_name, nblinks):

  numbers = parse_input(Path(cwd, file_name))
  nvals = 0

  for indt, node in enumerate(numbers):

    last_nodes = {node:1}
    counter = 0

    while counter<nblinks:
      new_nodes = defaultdict(int)

      for val,count in last_nodes.items():
        val_next_nodes = calculate_next(val)

        for node in val_next_nodes:
          new_nodes[node] += count

      last_nodes = new_nodes
      counter += 1
    nvals += sum(last_nodes.values())

  return nvals

[–] [email protected] 1 points 1 month ago

C

Started out a bit sad that this problem really seemed to call for hash tables - either for storing counts for an iterative approach, or to memoize a recursive one.

Worried that the iterative approach would have me doing problematic O(n^2) array scans I went with recursion and a plan to memoize only the first N integers in a flat array, expecting low integers to be much more frequent (and dense) than higher ones.

After making an embarrassing amount of mistakes it worked out beautifully with N=1m (testing revealed that to be about optimal). Also applied some tail recursion shortcuts where possible.

day11  0:00.01  6660 Kb  0+1925 faults

Code

#include "common.h"

/* returns 1 and splits x if even-digited, 0 otherwise */
static int
split(uint64_t x, uint64_t *a, uint64_t *b)
{
	uint64_t p;
	int n, i;

	if (!x) return 0;
	for (n=0, p=1; p<=x;  n++, p*=10) ; if (n%2) return 0;
	for (i=0, p=1; i<n/2; i++, p*=10) ;
	*a = x/p;
	*b = x%p; return 1;
}

/*
 * recur() is memoized in mem[]. Testing found the size MEMZ to be optimal:
 * lowering siginificantly reduced hits, but raising tenfold didn't add a
 * single hit.
 */

#define MEMZ (1024*1024)
static uint64_t mem[MEMZ][76];

static uint64_t
recur(uint64_t v, int n)
{
	uint64_t a,b;

	if (n<1 ) return 1;
	if (v==0) return recur(1, n-1);
	if (v<10) return recur(v*2024, n-1);
	if (v<MEMZ && mem[v][n]) return mem[v][n];
	if (!split(v, &a, &b))   return recur(v*2024, n-1);

	return v<MEMZ ? mem[v][n] =
	    recur(a, n-1) + recur(b, n-1) :
	    recur(a, n-1) + recur(b, n-1);
}

int
main(int argc, char **argv)
{
	uint64_t p1=0,p2=0, val;

	if (argc > 1)
		DISCARD(freopen(argv[1], "r", stdin));

	while (scanf(" %"SCNu64, &val) == 1) {
		p1 += recur(val, 25);
		p2 += recur(val, 75);
	}

	printf("10: %"PRId64" %"PRId64"\n", p1, p2);
	return 0;
}

https://github.com/sjmulder/aoc/blob/master/2024/c/day11.c

[–] [email protected] 1 points 1 month ago

Kotlin

Gone mathematical.

Also overflowing indices screwed with me a bit.

Here's the code:

import kotlin.math.floor
import kotlin.math.log
import kotlin.math.pow
import kotlin.time.DurationUnit

fun main() {
    fun part1(input: List<String>): Long = Day11Solver(input).solve(25)

    fun part2(input: List<String>): Long = Day11Solver(input).solve(75)

    val testInput = readInput("Day11_test")
    check(part1(testInput) == 55312L)
    //check(part2(testInput) == 0L)  No test output available.

    val input = readInput("Day11")
    part1(input).println()
    part2(input).println()

    timeTrials("Part 1", unit = DurationUnit.MICROSECONDS) { part1(input) }
    timeTrials("Part 2", repetitions = 1000) { part2(input) }
}

class Day11Solver(input: List<String>) {
    private val parsedInput = input[0].split(' ').map { it.toLong() }

    /*
     * i ∈ β„•β‚€ βˆͺ {-1}, Ο†α΅’: β„•β‚€ β†’ β„• shall be the function mapping the amount of stones generated to the amount of steps
     * taken with a stone of starting number i.
     *
     * Furthermore, Ρ±: β„•β‚€ β†’ β„•β‚€ β¨― (β„•β‚€ βˆͺ {-1}) shall be the function mapping an index to two new indices after a step.
     *
     *         ⎧ (1, -1)       if i = 0
     * Ρ±(i) := ⎨ (a, b)        if ⌊lg(i)βŒ‹ + 1 ∈ 2 β„•    with a := i/(10^((⌊lg(i)βŒ‹ + 1) / 2)), b := i - 10^((⌊lg(i)βŒ‹ + 1) / 2) * a
     *         ⎩ (2024 i, -1)  otherwise
     *
     *          ⎧ 0                      if i = -1
     * Ο†α΅’(n) := ⎨ 1                      if n = 0
     *          ⎩ Ο†β‚–(n - 1) + Ο†β‚—(n - 1)  otherwise    with (k, l) := Ρ±(i)
     *
     * With that Ο†α΅’(n) is a sum with n up to 2ⁿ summands, that are either 0 or 1.
     */
    private val cacheIndices = mutableMapOf<Long, Pair<Long, Long>>()  // Cache the next indices for going from Ο†α΅’(n) to Ο†β‚–(n - 1) + Ο†β‚—(n - 1).
    private val cacheValues = mutableMapOf<Pair<Long, Int>, Long>()  // Also cache already calculated Ο†α΅’(n)

    fun calculatePsi(i: Long): Pair<Long, Long> = cacheIndices.getOrPut(i) {
        if(i == -1L) throw IllegalArgumentException("Advancement made: How did we get here?")
        else if (i == 0L) 1L to -1L
        else {
            val amountOfDigits = (floor(log(i.toDouble(), 10.0)) + 1)

            if (amountOfDigits.toLong() % 2 == 0L) {
                // Split digits at the midpoint.
                val a = floor(i / 10.0.pow(amountOfDigits / 2))
                val b = i - a * 10.0.pow(amountOfDigits / 2)
                a.toLong() to b.toLong()
            } else {
                2024 * i to -1L
            }
        }
    }

    fun calculatePhi(i: Long, n: Int): Long = cacheValues.getOrPut(i to n) {
        if (i == -1L) 0L
        else if (n == 0) 1L
        else {
            val (k, l) = calculatePsi(i)
            calculatePhi(k, n - 1) + calculatePhi(l, n - 1)
        }
    }

    fun solve(steps: Int): Long = parsedInput.sumOf {
        val debug = calculatePhi(it, steps)
        debug
    }
}


Try it out here.

And this is the full repo.