this post was submitted on 08 Jul 2023
12 points (100.0% liked)
Programming
17313 readers
167 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This is interesting. Naively I'd expect that each number in a shuffled array of length n has a 1/n chance of ending up in the correct position, so there ought to be on average 1 correctly placed number regardless of the array length. I might be neglecting a correlation here, where each incorrectly placed number decreases the odds for the remaining numbers. Assuming the above though, the whole problem becomes recursive, since we'd be left with an unsorted array of length n-1 on average. The expected number of sorts would then just be n. For the time complexity, we'd have O(n) for the original shuffle, plus O(n-1) for the next, and so on, yielding O(n^2) overall.