this post was submitted on 26 Mar 2024
124 points (88.3% liked)
Asklemmy
44151 readers
1520 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy π
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Zeno's Paradox, even though it's pretty much resolved. If you fire an arrow at an apple, before it can get all the way there, it must get halfway there. But before it can get halfway there, it's gotta get a quarter of the way there. But before it can get a fourth of the way, it's gotta get an eighth... etc, etc. The arrow never runs out of new subdivisions it must cross. Therefore motion is actually impossible QED lol.
Obviously motion is possible, but it's neat to see what ways people intuitively try to counter this, because it's not super obvious. The tortoise race one is better but seemed more tedious to try and get across.
So the resolution lies in the secret that a decreasing trend up to infinity adds up to a finite value. This is well explained by Gabriel's horn area and volume paradox: https://www.youtube.com/watch?v=yZOi9HH5ueU
If I remember my series analysis math classes correctly: technically, summing a decreasing trend up to infinity will give you a finite value if and only if the trend decreases faster than the function/curve
x -> 1/x
.Great. Can you give me example of decreasing trend slower than that function curve?, where summation doesn't give finite value? A simple example please, I am not math scholar.
So, for starters, any exponentiation "greater than 1" is a valid candidate, in the sense that 1/(n^2), 1/(n^3), etc will all give a finite sum over infinite values of n.
From that, inverting the exponentiation "rule" gives us the "simple" examples you are looking for: 1/βn, 1/β(βn), etc.
Knowing that
βn = n^(1/2)
, and so that 1/βn can be written as 1/(n^(1/2)), might help make these examples more obvious.Hang on, that's not a decreasing trend. 1/β4 is not smaller, but larger than 1/4...?
From 1/β3 to 1/β4 is less of a decrease than from 1/3 to 1/4, just as from 1/3 to 1/4 is less of a decrease than from 1/(3Β²) to 1/(4Β²).
The curve here is not mapping 1/4 -> 1/β4, but rather 4 -> 1/β4 (and 3 -> 1/β3, and so on).
Here is an alternative Piped link(s):
https://www.piped.video/watch?v=yZOi9HH5ueU
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I'm open-source; check me out at GitHub.
I had success talking about the tortoise one with imaginary time stamps.
I think it gets more understandable that this pseudo paradox just uses smaller and smaller steps for no real reason.
If you just go one second at a time you can clearly see exactly when the tortoise gets overtaken.
The resolution I always use is that the time period you're looking at also shrinks. There's no real reason to keep looking at smaller and smaller periods of time, but even if you do, you can resolve it with an infinite sum that adds up to a finite value. Zeno was actually pretty close to figuring out a very useful mathematical property.
Came to say the same thing. Zeno's paradoxes are fun. π
Lol. It pretty much just decreases the time span you look at so that you never get to the point in time the arrow reaches the apple. Nothing there to be "solved" IMHO