this post was submitted on 18 Dec 2023
114 points (75.0% liked)
Technology
60347 readers
5815 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It’s apparently good at 100% at classifying autism in groups that have already been flagged for high chance of ASD. It is not good at just any old picture.
TD stands for "typical development."
So it correctly differentiated between children diagnosed with ASD and those without it with 100% accuracy.
The confounding factors are that they excluded children with ASD and other issues that might have muddied the waters, so it may not be 100% effective at distinguishing between all cases of ASD vs TD.
There's no reason to think that given a retinal photograph of someone who hasn't been diagnosed with ASD that it would fail to reject the diagnosis or confirm it if ASD was the only factor.
And this appears to be based on biological differences that have already been researched:
And given that the heat maps of what the model was using to differentiate were almost entirely the optical disc, I'm not sure why so many here are scoffing at this result.
It wasn't 100% at identifying severity or more nuanced differences, but was able to successfully identify whether the retinal image was from someone diagnosed with ASD or not with 100% success rate in the roughly 150 test images split between the two groups.