this post was submitted on 05 Nov 2023
803 points (97.9% liked)

Memes

45585 readers
1320 users here now

Rules:

  1. Be civil and nice.
  2. Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you have to.

founded 5 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 39 points 1 year ago* (last edited 1 year ago) (1 children)

edit: fix similarities typo

Awesome to see the similarities between: Newtonian Mechanics and Quantum mechanics

Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.

Here, ke is a constant, q1 and q2 are the quantit>ies of each charge, and the scalar r is the distance between the charges.

Being an inverse-square law, the law is similar to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces always make things attract, while electrostatic forces make charges attract or repel. Also, gravitational forces are much weaker than electrostatic forces. Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single point charge at rest, the two laws are equivalent, expressing the same physical law in different ways. The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.

[–] [email protected] 23 points 1 year ago (1 children)

It's electromagnetism you mean, not quantum mechanics.

[–] [email protected] -4 points 1 year ago (1 children)

Guess what electromagnetism turned out to be

[–] [email protected] 20 points 1 year ago (2 children)

They're different things. The OP means electromagnetism, Coulomb's law has nothing to do with quantum mechanics, it's classical physics.

[–] [email protected] -3 points 1 year ago

Quantum electrodynamics though

[–] [email protected] -5 points 1 year ago (2 children)

Okay but tell me, what theory superceded electromagnetism?

Sure, EM is still useful, I use it in my work, but in the end, it all boils down to QM.

[–] [email protected] 12 points 1 year ago (1 children)

"X depends on or is built up on Y" does not imply "X is Y". Concepts, laws, techniques, etc. can depend or be higher-order expressions of QM without being QM. If you started asking a QM scientist about tensile strength or the Mohs scale they would (rightly) be confused.

[–] [email protected] -1 points 1 year ago (2 children)

Yes, of course. Coloumb and Maxwell had no idea about QM when they were developing their ideas. Not to mention that these higher-order abstractions are just as valid as QM (up to a point, but so is QM). Depening on the application, you'd want to use a different abstraction. EM is perfect for everyday use, as well as all the way down to the microscale.

My point is that EM is explained by QM, and therefore supercedes it. You could use QM to solve every EM problem, it'd just be waaaaay too difficult to be practical.

[–] [email protected] 6 points 1 year ago

I feel like you're using "supercede" differently to the rest of us. You're getting a hostile reaction because it sounded like you're saying that EM is no longer at all useful because it has been obsoleted (superceded) by QM. Now you're (correctly) saying that EM is still useful within its domain, but continuing to say that QM supercedes it. To me, at least, that's a contradiction. QM extends EM, but does not supercede it. If EM were supercedes, there would be no situation in which it was useful.

[–] SuckMyWang 3 points 1 year ago* (last edited 1 year ago) (1 children)

Guys guys, yesterday I ate some hot wings and then shit myself on the way to the toilet 🤣💪💯

Also can you really solve all em equations with qm? I always thought the laws broke down from one to the other? So you’re saying going from em to qm the laws break down but going from qm to em the laws hold up?

[–] [email protected] 1 points 1 year ago (1 children)

Huh? Not sure what the first part of your comment means but I'll give it a go...

Quantum mechanics basically explains all interactions between particles/waves (take your pick, it's all the same) except gravitational interactions. You can use the laws of QM to solve any problem you'd have if you were studying electromagnetism, in fact you can derive versions of EM directly from QM. EM will start breaking down at small scales, we're talking 10^-9 m ish. It'll still be accurate, you'll just notice your data will be off from your calculations the smaller you go. You can exploit QM effects to be tangible/visible on larger scales, but it takes some work. QM only starts breaking down at the Planck scale, which is suuuuuuper small. We can't observe anything that small yet so it kinda doesn't matter. It'd be nice if we had a theory that did, though.

[–] SuckMyWang 1 points 1 year ago* (last edited 1 year ago) (1 children)

The first part was me being humbled by the intellectual conversation and it going way over my head so I said the dumbest thing I could think of to level it out. But then I reread it and learned something. Planck scale being built up from minimum units? I’m assuming this is what string theory is attempting to do? Also don’t you find it kind of stupid that the largest size is 10m^26 and the smallest is 10m^-35 and we naturally observe the universe closest to 10m^0? Like we’re right in the middle of that? Seems obvious that looking in each direction and hitting a wall is analogous to naturally looking into the distance and only being able to see so far and looking closely and only being able to see so far.

[–] [email protected] 2 points 1 year ago

Oh yeah, that's super interesting! I think our understanding of the universe (and conseqentially, our theories) are a byproduct of our place in the universe. If we were on a smaller scale and still had the same intelligence, perhaps we could peer deeper in one direction, at the cost of the other. I think there could be infinte complexity hiding just beyond our reach.

[–] [email protected] 6 points 1 year ago* (last edited 1 year ago)

Quantum mechanics didn't supersede electromagnetism. Again, they're different things. Electromagnetism is a fundamental interaction. Whereas quantum mechanics describes the mechanics of quantum particles. Whether those particles are affected by electromagnetic forces or not. It's a description of how they behave at quantum scales.

Coulomb's law has nothing to do with quantum mechanics, it's a description of how macroscopic charged particles interact. What the OP should have said to be correct is:

Awesome to see the similarities between: Newton's law of gravitation and Coulomb's law

I don't know where he got quantum mechanics from.