this post was submitted on 07 Oct 2023
995 points (97.7% liked)

Technology

60016 readers
2628 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

Previous posts: https://programming.dev/post/3974121 and https://programming.dev/post/3974080

Original survey link: https://forms.gle/7Bu3Tyi5fufmY8Vc8

Thanks for all the answers, here are the results for the survey in case you were wondering how you did!

Edit: People working in CS or a related field have a 9.59 avg score while the people that aren’t have a 9.61 avg.

People that have used AI image generators before got a 9.70 avg, while people that haven’t have a 9.39 avg score.

Edit 2: The data has slightly changed! Over 1,000 people have submitted results since posting this image, check the dataset to see live results. Be aware that many people saw the image and comments before submitting, so they've gotten spoiled on some results, which may be leading to a higher average recently: https://docs.google.com/spreadsheets/d/1MkuZG2MiGj-77PGkuCAM3Btb1_Lb4TFEx8tTZKiOoYI

you are viewing a single comment's thread
view the rest of the comments
[–] rainerloeten 3 points 1 year ago (1 children)

This isn't possible as of now, at least not reliably. Yes, you can tailor a model to one specific generative model, but because we have no reliable outlier detection (to train the "AI made detector"), a generative model can always be trained with the detector model incorporated in the training process. The generative model (or a new model only designed to perturb output of the "original" generative model) would then learn to create outliers to the outlier detector, effectively fooling the detector. An outlier is everything that pretends to be "normal" but isn't.

In short: as of now we have no way to effectively and reliably defend against adversarial examples. This implies, that we have no way to effectively and reliably detect AI generated content.

Please correct me if I'm wrong, I might be mixing up some things.