this post was submitted on 04 Oct 2023
276 points (98.9% liked)
Linux
48074 readers
1332 users here now
From Wikipedia, the free encyclopedia
Linux is a family of open source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991 by Linus Torvalds. Linux is typically packaged in a Linux distribution (or distro for short).
Distributions include the Linux kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name GNU/Linux to emphasize the importance of GNU software, causing some controversy.
Rules
- Posts must be relevant to operating systems running the Linux kernel. GNU/Linux or otherwise.
- No misinformation
- No NSFW content
- No hate speech, bigotry, etc
Related Communities
Community icon by Alpár-Etele Méder, licensed under CC BY 3.0
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's certainly why it is being used to build browsers and OSs now. Those are places were memory management problems are a huge problem. It probably doesn't make sense for every match 3 game to be made in Rust, but when errors cause massive breaches or death, it's a lot safer than C++, taking human faulability into account.
Question would be rather: why is something like C++ needed for such simple apps?
C++ seems to be in that weird in-between place of offering high level features to be reasonable productive, but still doesn't enforce/guarantee anything to make these features safe. I'd argue, very few programs need that. Either you're writing business stuff, then you want safety (Java, C#, rust), or you're writing embedded/low level stuff, then you want control (C, ASM).
The room for "productive, but not interested in safety" is basically just AAA games, I guess.
C is almost the old "steady" standard now it feels like. It's so flexible and the frameworks are already built..
...except that we also end up with cracks in our foundations like this exploit constantly being exposed as a result of all that C
Well you're not going to write asm if you want your code to be portable at all, and believe it or not C++ has a lot of features to help you not shoot yourself in the foot that C doesn't have (ex. OOP, RAII, smart pointers).
C wasn't really designed with dynamic memory management in mind. It was designed for someone who has absolute control over a machine and all the memory in it.
malloc()
andfree()
are just functions that some environments expose to user mode processes, but C was never designed to care where you got your memory or what you do with it.What makes rust so resiliant against these types of atacks?
The short answer is Rust was built with safety in mind. The longer answer is C was built mostly to abstract from assembly without much thought to safety. In C, if you want to use an array, you must manually request a chunk of memory, check to make sure you are writing within the bounds of your array, and free up the memory used by your array when completely done using it. If you do not do those steps correctly, you could write to a null pointer, cause a buffer overflow error, a use-after-free error, or memory leak depending on what step was forgotten or done out of order. In Rust, the compiler keeps track of when variables are used through a borrowing system. With this borrowing system the Rust compiler requests and frees memory safely. It also checks array bounds at run-time without a programmer explicitly needing to code it in. Several high-level languages have alot of these safety features too. C# for example, can make sure objects are not freed until they fall out of scope, but it does this at run-time with a garbage collector where Rust borrower rules are done at compile-time.
That’s actually not true; rather, many modern architectures are designed to allow languages like C to be compiled more easily. Old architectures don’t even have a built-in stack.
The compiler enforces "aliasing XOR mutability"; utilizes "move semantics"; has a "borrowing and ownership" model; and requires the programmer to tag their references with "lifetimes". Array accesses are checked at runtime if they cannot be guaranteed safe at compile-time. Variables passed by value (moved) cannot be reused. Variables cannot be moved or mutated if any borrow to them exists. You may either have only one mutable borrow, or many immutable borrows, but never both. Therefore you cannot mutate an array while iterating on it, and you cannot have two separate unchecked references to the same array. Every function or type that accepts a borrow must be able to annotate the lifetimes of references to ensure that references are always dropped in the correct order to prevent dangling references. Rust requires developing software with discipline using patterns that satisfy all of these constraints.