this post was submitted on 03 Aug 2023
104 points (62.7% liked)
Technology
61959 readers
3274 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That doesn't make a lot of sense to me.
Humans can only hear up to about 20kHz, so you're not getting much benefit above about double that.
Even assuming that humans could hear frequencies hundreds of times higher, audio isn't generally available sampled at 11.2 Mhz. If you're getting music, the recording and audio engineering work, the microphones, etc, aren't designed to accurately capture data at high frequencies.
Even assuming that none of that were the case, the audio engineer and artists weren't trying to make audio that sounds good at that frequency (which they can't hear either). The music doesn't intrinsically have some aesthetically-pleasing quality that you can extract; they were the ones who added it, and they did that via making judgments using their own senses, which can't hear this.
Even aside from that, it doesn't look like this comes with headphones. Whatever you are plugging into this has to induce vibration in the air for it to make it to your ears, and probably does not have a meaningful frequency response at that frequency.
And it makes even less sense if your starting audio has actually thrown out data in frequencies that humans can hear by using lossy compression there, even if we aren't terribly sensitive to those.
MHz refers to the samples per second, not the pitch. CD audio for example is 16-bit/44.1kHz. What that means is there are 16-bits of sampling (audio) taken 44,100 times per second. DSD on the other hand is 1-bit samples taken 11.2 million times per second, this is referred to as DSD256. What that translates to is a digital wave that looks a lot closer to an analog wave than a CD does. It has nothing to do with the frequency of listening in this case.
If you'd like to learn more, check this out.
You should also check this out: https://www.youtube.com/watch?v=cD7YFUYLpDc
Here is an alternative Piped link(s): https://piped.video/watch?v=cD7YFUYLpDc
https://piped.video/watch?v=cD7YFUYLpDc
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I'm open-source, check me out at GitHub.
I think this article covers it more succinctly https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
edit:
also relevant: https://en.wikipedia.org/wiki/Delta-sigma_modulation#