this post was submitted on 05 Feb 2025
66 points (97.1% liked)
Asklemmy
44672 readers
1121 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Showing people irrefutable proof of something will change their minds.
There are only finitely many prime numbers and I will not hear otherwise.
And your irrefutable proof is...?
If you want to show there are infinitely many primes, one way is to first note that every integer greater than 1 has a prime factor. This is because if an integer n is prime, n is a prime factor of itself, and if n is not prime then it must have a smaller factor m other than 1, 1< m < n. If m is also not prime, it too must have a smaller factor other than 1, and you can keep playing this game but there are only so many integers between 1 and n so eventually you'll get to a factor of n that has no smaller factors of its own other than 1, which means it is prime.
Let's now suppose there is only a finite number of primes, we'll try to show that this assumption leads to nonsense so can't be possible.
We can multiply any finite number of integers together to get a new integer. Let's multiply all of the primes together to get a new number M. Then M + 1 gives a remainder of 1 when you divide by any prime number. Since dividing by a factor will always give a remainder of 0, none of the prime numbers can be a factor of M + 1. So M + 1 is an imteger bigger than 1 with no prime factors. This is impossible, so there must be a mistake somewhere in this argument.
The only thing we said that we're not 100% sure is true was that there are a finite number of primes, so that has to be our mistake. So there must be infinitely many prime numbers.