this post was submitted on 24 Dec 2024
13 points (100.0% liked)
Advent Of Code
920 readers
3 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2024
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2024 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Haskell part 2, much better solution
Okay, here's the outline again - this one ran instantly.
Rather than probing with example values, I took a different approach, debugging the structure. I only really care about inputs and outputs, so I wrote something that turns the "wiring diagram" into a map of label -> Expr, where
(the
Eq
instance is stable in symmatric expressions, eg(==) (EAnd a b) (Eand c d) = a == c && b == d || a == d && b == c
)The expressions are grounded in "inputs" ("x00".."x44", "y00".."y44") - that is, they just expand out all of the intermediary labelled things.
Then I constructed a circuit that I was after by building a non-swapped 44/45-bit full adder, and produced the same set of expressions for those.
Then: for each output, z00..z45, check the "spec" expression against the actual one. If they're identical, move on.
Otherwise, find some candidate pairs to swap. For these, I considered all possible labelled outputs except "stable" ones - that is, those that were input depdendencies of z_(i-1) - ie, don't swap any outputs involved in the computation that's validated thus far.
Taking the new layout with swapped outputs and its corresponding set of expressions, carry on searching as before.
A linear scan over the output bits was all that was required - a unique answer poped out without any backtracking.
Anyway, happy Christmas all.
PS. My other version worked (eventually) - it was following this approach that led me to realise that my "spec" full adder was broken too :-D Never skip the unit tests.
(@[email protected] you were asking about alternatives to graphviz-style approaches I recall)
Yes, I was, and this is very impressive. This should be a generic solution right? I'll have to work out how to run it and test on my input.
Generic-ish. It'll fit any of the input problems I think. You could fool it by using a non-canonical circuit, because it knows nothing about the equivalence of boolean expressions; and it also relies on one swap sufficing to fix an output, so I didn't go particularly far into turning it into a generic search. Either of those problem extensions would take much more effort from a solver, so my expectation is that they were deliberately avoided.