this post was submitted on 24 Dec 2024
13 points (100.0% liked)
Advent Of Code
920 readers
2 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2024
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2024 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Haskell bits and pieces
The nice thing about Haskell's laziness (assuming you use Data.Map rather than Data.Map.Strict) is that the laziness can do a ton of the work for you - you might've spotted a few Haskell solutions in earlier days' threads that use this kind of trick (eg for tabling/memoisation). Here's my evaluation function:
For part 2, we know what the graph should look like (it's just a binary adder); I think this is a maximal common subgraph problem, but I'm still reading around that at the mo. I'd love to know if there's a trick to this.
Thank you for showing this trick, I knew Haskell was lazy but this one blew my mind again.
Yeah, I remember when I saw this for the first time. It's astonishing how powerful lazy evaluation can be at times.