this post was submitted on 19 Dec 2024
267 points (98.9% liked)

science

15002 readers
698 users here now

A community to post scientific articles, news, and civil discussion.

rule #1: be kind

<--- rules currently under construction, see current pinned post.

2024-11-11

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] Hugin 139 points 2 days ago (10 children)

This article is a mess and badly written.

Basicly magnetism comes from electron spin orientation. There are two well known spin configurations.

Ferromagnetism: there is at least one electron with a spin that isn't paired with an opposite spin electron. That atom then has a north and south magnetic pole. Like iron. Arrange all the atoms pointing the same way and you have a refrigerator magnet.

antiferromagnetism: all the electrons in the atom are paired with an opposite spin election. It's complicated but basically they couple together and there isn't a magnetic pole outside the atom. Like in copper.

Altermagnetism: what this article is about. You have a crystal of atoms with an unpaired electrons. The crystal would normally be ferromanetic. However they are arranged in a regular set of pairs that cause the electron spin to cancle out. Think of a checkerboard pattern where each white square cancels a black square next to it.

The antiferromagnetism and altermagnetism both have the spins cancelled out but the mechanism is different so there are different properties. Kramers degenerate vs wavevector.

In theory this gives you an extra state spin. So a magnetic drive uses a pattern of north and south to encode information. Ie NNSN becomes 0010.

With this you have north, south but also spin left, right. So you can encode more information.

[–] [email protected] 4 points 23 hours ago (1 children)

How do you control the spin of an electron?

[–] Hugin 2 points 22 hours ago

I know the usual way uses oscillating magnetic fields and it being very cold. There are other ways i'm not familiar with. I'm a classical computer engineer not a quantum computer engineer. I'm more used to energy bandgap then spin control.

load more comments (8 replies)