this post was submitted on 16 Dec 2024
8 points (83.3% liked)
Advent Of Code
920 readers
57 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2024
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 18 | 20 | 21 | 22 |
23 | 24 | 25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2024 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
C
Yay more grids! Seemed like prime Dijkstra or A* material but I went with an iterative approach instead!
I keep an array cost[y][x][dir], which is seeded at 1 for the starting location and direction. Then I keep going over the array, seeing if any valid move (step or turn) would yield to a lower best-known-cost for this state. It ends when a pass does not yield changes.
This leaves us with the best-known-costs for every reachable state in the array, including the end cell (bit we have to take the min() of the four directions).
Part 2 was interesting: I just happend to have written a dead end pruning function for part 1 and part 2 is, really, dead-end pruning for the cost map: remove any suboptimal step, keep doing so, and you end up with only the optimal steps. 'Suboptimal' here is a move that yields a higher total cost than the best-known-cost for that state.
It's fast enough too on my 2015 i5:
Code
Very interesting approach. Pruning deadends by spawning additional walls is a very clever idea.