this post was submitted on 08 Aug 2024
5 points (85.7% liked)
IWTL I Want To Learn
208 readers
2 users here now
This is a place where you can post for something you want to learn. We expect users to help out. Also please be civil and no NSFW stuff.
founded 4 months ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This came across as someone who might not know what they're doing. If that's not you, my apologies. For example, you didn't list the input power or how many dB you're looking for, which is pretty central to the operation of any linear amp.
What this device's output, exactly? The first amp that I'm using for the transmit chain on my build would give around a Watt out, which is close. I can't remember how low the frequency range goes, but I wouldn't be surprised if the same vendor produces one for lower-frequency use as well as SW.
It looks like this is a near-field device, by the lack of a building-sized radio mast. What's your plan to manage the resulting SWR?
Yup, that's why I'm here. I thought that was the point of "IWTL"?
I have a NanoVNA so could build a small dipole. High efficiency isn't really the point.
I'm not going for anything fancy, I just want to know the basics of how to design and build an RF amplifier.
It's only in the mW region. The effective transmission is only within a metre (3 feet) of the device.
Gain can be small, even if it's 10 or 20 dB. I want to learn the principles of design and then I can work from there.
It is. In that case I'll recommend you go with a different project. Same as if it was IWTL how to make a small amount of Florine gas - sure, there's neat things you could do with that, but maybe stick to things not likely to cause a civil disturbance. You say it wouldn't effect neighbors but I'm kind of skeptical. A typical suburban noise floor at 1 MHz might be around -100 dBm. Apply the inverse-square law to divine how far your signal - if actually transmitted - can go.
Radio is really cool, I'm not trying to discourage you here, or be patronising. I'll say that I'd guess many commercial BJTs will work to amplify 1MHz in this power range, albeit with distortion. How to design a circuit that will be linear is something I haven't personally looked into much. I'd guess that the know-how to do that would amount to a good crash course in many of the other analog concepts you might need, like what near-field means.
Actually, that specific one might not be involved, so I'll throw it out there. An antenna needs to be 1/4 wavelength long, or it's not really interacting with waves, but just local fields. Something also within a fraction of the wavelength may feel the field (it's in the near field), but not much in the way of a wave will be produced off into the distance, for the same reason you can't flip or snap a rope with just your fingers. MW is defined as being over 100m wavelength, so any antenna below 25m is electrically short in those frequencies.
Efficiency might not be the point, but not frying your amp is good. Maybe your low-power amplifier can handle Watts of standing wave, but I wouldn't assume it. Like I covered, no small antenna will make a difference here.
I don't want to break the amp, but I'm expecting my first attempt to be non-ideal.
Yes, that is exactly why I am asking here. I was hoping someone could point me in a direction.
Yes, I would likely use a Hertzian dipole. Which is inefficient. So not likely to cause much distant interference.
Ah, I see what you mean now. I was thinking you meant a proper half-wave dipole, which is the wrong answer.