this post was submitted on 24 Jun 2024
148 points (97.4% liked)

Asklemmy

44408 readers
2465 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy πŸ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_[email protected]~

founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 2 points 7 months ago

Okay, so I see someone else already did an effortpost, so I'll just add on.

Benjamin Franklin assumed logically that electricity obviously must flow from positive to negative (since it’s the logical choice), but alas, he was wrong as far as history sees it.

Well, I'm sure he knew it was a guess. He was a smart man. He picked glass as the thing that picks up "electric fluid" in static electricity experiments, becoming "positively charged", in other words a positive excess of fluid, when in fact it loses electrons. Until someone invented vacuum tubes a century or so later nobody could tell the difference.

Positive-to-negative is called "conventional current", and circuit diagrams are still drawn that way. Unfortunately, the charge and direction of the particles moving (rather than just that they are moving) can become important if you want to understand electrochemistry, for example. Metal ions are positively charged (missing an electron), and so they're going to come off of the electrode where electrons being removed, and plate on to the electrode where they're being added. You have to remember the conventional current is opposite to the actual current to picture a battery running a circuit, and if it's connected to a bunch of digital chips in a complicated way, I, at least, can get lost.

If that's still unclear, any further questions are welcome.